Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Physiol ; 154(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928298

RESUMO

Work over the past three decades has greatly advanced our understanding of the regulation of Kir K+ channels by polyanionic lipids of the phosphoinositide (e.g., PIP2) and fatty acid metabolism (e.g., oleoyl-CoA). However, comparatively little is known regarding the regulation of the K2P channel family by phosphoinositides and by long-chain fatty acid-CoA esters, such as oleoyl-CoA. We screened 12 mammalian K2P channels and report effects of polyanionic lipids on all tested channels. We observed activation of members of the TREK, TALK, and THIK subfamilies, with the strongest activation by PIP2 for TRAAK and the strongest activation by oleoyl-CoA for TALK-2. By contrast, we observed inhibition for members of the TASK and TRESK subfamilies. Our results reveal that TASK-2 channels have both activatory and inhibitory PIP2 sites with different affinities. Finally, we provided evidence that PIP2 inhibition of TASK-1 and TASK-3 channels is mediated by closure of the recently identified lower X-gate as critical mutations within the gate (i.e., L244A, R245A) prevent PIP2-induced inhibition. Our findings establish that K+ channels of the K2P family are highly sensitive to polyanionic lipids, extending our knowledge of the mechanisms of lipid regulation and implicating the metabolism of these lipids as possible effector pathways to regulate K2P channel activity.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Animais , Ácidos Graxos , Metabolismo dos Lipídeos , Fosfatidilinositóis , Canais de Potássio de Domínios Poros em Tandem/metabolismo
2.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195757

RESUMO

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Assuntos
Mutação com Ganho de Função , Síndromes da Apneia do Sono , Criança , Deficiências do Desenvolvimento , Humanos , Mutação/genética , Proteínas do Tecido Nervoso , Canais de Potássio de Domínios Poros em Tandem , Síndromes da Apneia do Sono/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA