Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(3): 711-726, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773318

RESUMO

A number of negative emission technologies (NETs) have been proposed to actively remove CO2 from the atmosphere, with enhanced silicate weathering (ESW) as a relatively new NET with considerable climate change mitigation potential. Models calibrated to ESW rates in lab experiments estimate the global potential for inorganic carbon sequestration by ESW at about 0.5-5 Gt CO2  year-1 , suggesting ESW could be an important component of the future NETs mix. In real soils, however, weathering rates may differ strongly from lab conditions. Research on natural weathering has shown that biota such as plants, microbes, and macro-invertebrates can strongly affect weathering rates, but biotic effects were excluded from most ESW lab assessments. Moreover, ESW may alter soil organic carbon sequestration and greenhouse gas emissions by influencing physicochemical and biological processes, which holds the potential to perpetuate even larger negative emissions. Here, we argue that it is likely that the climate change mitigation effect of ESW will be governed by biological processes, emphasizing the need to put these processes on the agenda of this emerging research field.


Assuntos
Mudança Climática , Solo , Carbono , Dióxido de Carbono , Sequestro de Carbono , Efeito Estufa , Silicatos
2.
Environ Res ; 192: 110299, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058811

RESUMO

Metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), are chemicals with a bioaccumulative potential that are detected in wildlife around the world. Although multiple studies reported the pollution of the aquatic environment with these chemicals, only limited data is present on the environmental pollution of Tanzania's aquatic environment and the possible risks for human health through consumption of contaminated fish or invertebrates. In the present study, we examined the distribution of metals and POPs in fish, invertebrates, sediment and water, collected at two different years at multiple important water reservoirs for domestic and industrial purposes, in the aquatic environment near Morogoro, Tanzania. Furthermore, we assessed the possible risks for human health through consumption of contaminated fish and shrimp. Metal concentrations in the water, sediment, invertebrates and fish appeared to increase in sites downstream from Morogoro city, likely caused by the presence of the city as pollution source. Significant differences in accumulated concentrations of metals and POPs were observed between species, which was hypothesized to be caused by dietary differences. Concentrations of multiple metals exceeded water and sediment quality guidelines values. Only Cu (2.8-17 µg/L) and Zn (

Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/toxicidade , Sedimentos Geológicos , Humanos , Poluentes Orgânicos Persistentes , Tanzânia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 790: 148059, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34102443

RESUMO

Perfluoroalkyl acids (PFAAs) are a group of synthetic persistent chemicals with distinctive properties, such as a high thermal and chemical stability, that make them suitable for a wide range of applications. They have been produced since the 1950s, resulting in a global contamination of the environment and wildlife. They are resistant to biodegradation and have the tendency to bio-accumulate in organisms and bio-magnify in the food chain. However, little is known about the bioaccumulation of PFAAs in terrestrial invertebrates, including how they affect the physiology and particularly oxidative status. Therefore, we studied the bioaccumulation of PFAAs in snails that were exposed for 3 and 6 weeks along a distance gradient radiating from a well-known fluorochemical hotspot (3M). In addition, we examined the potential effects of PFAAs on the oxidative status of these snails. Finally, we tested for relationships between the concentrations of PFAAs in snails with those in soil and nettles they were feeding on and the influence of soil physicochemical properties on these relationships. Our results showed higher concentrations of PFOA and/or PFOS in almost every matrix at the 3M site, but no concentration gradient along the distance gradient. The PFOS concentrations in snails were related to those in the nettles and soil, and were affected by multiple soil properties. For PFOA, we observed no relationships between soil and biota concentrations. Short-chained PFAAs were dominant in nettles, whereas in soil and snails long-chained PFAAs were dominant. We found a significant positive correlation between peroxidase, catalase and peroxiredoxins and PFAA concentrations, suggesting that snails, in terms of oxidative stress (OS) response, are possibly susceptible to PFAAs pollution. CAPSULE: We observed a positive correlation between the levels of PFAAs and the antioxidants peroxidase, catalase and peroxiredoxins in snails, exposed on nettles grown at contaminated sites.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes do Solo , Animais , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Estresse Oxidativo , Caramujos , Solo , Poluentes do Solo/análise
4.
Chemosphere ; 236: 124407, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545204

RESUMO

The widespread use of perfluoroalkylated acids (PFAAs) has led to a global presence in the environment, in which they accumulate and may cause detrimental effects. Although soils are known sinks for many persistent organic pollutants, still little is known on the behaviour of PFAAs in soils. Furthermore, studies that examine the relationships between PFAA concentrations and soil microbial parameters are scarce. The 3 M fluorochemical plant near Antwerp has been characterized as a PFAAs hotspot. In the present study, we examined the vertical distribution of 15 PFAAs and their associations with multiple physicochemical soil properties along a distance gradient from this hotspot. Additionally, we tested the relationships between PFAA concentrations in the top soil with soil respiration, microbial activity and microbial biomass. Our results show that both perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) concentrations were elevated in the subsurface layer (up to 50 cm), after which concentrations decreased again, suggesting a downward migration of both analytes in the soil. This downward movement might pose a potential threat for the contamination of the groundwater and, consequently, organisms that rely on this water for consumption. The soil concentrations were influenced by multiple physicochemical properties of the soil, which suggests differences in bioavailability and sorption/desorption capacities between different soil types. We did not observe any influence of PFAA contamination in the top soil on microbial activity and biomass nor soil respiration.


Assuntos
Indústria Química , Fluorocarbonos/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Ácidos Alcanossulfônicos/análise , Bélgica , Caprilatos/análise , Carbono/análise , Argila , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA