Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827942

RESUMO

Host-pathogen interactions play a major role in evolutionary selection and shape natural genetic variation. The genetically distinct Caenorhabditis elegans strains, Bristol N2 and Hawaiian CB4856, are differentially susceptible to the Orsay virus (OrV). Here, we report the dissection of the genetic architecture of susceptibility to OrV infection. We compare OrV infection in the relatively resistant wild-type CB4856 strain to the more susceptible canonical N2 strain. To gain insight into the genetic architecture of viral susceptibility, 52 fully sequenced recombinant inbred lines (CB4856 × N2 RILs) were exposed to OrV. This led to the identification of two loci on chromosome IV associated with OrV resistance. To verify the two loci and gain additional insight into the genetic architecture controlling virus infection, introgression lines (ILs) that together cover chromosome IV, were exposed to OrV. Of the 27 ILs used, 17 had an CB4856 introgression in an N2 background, and 10 had an N2 introgression in a CB4856 background. Infection of the ILs confirmed and fine-mapped the locus underlying variation in OrV susceptibility, and we found that a single nucleotide polymorphism in cul-6 may contribute to the difference in OrV susceptibility between N2 and CB4856. An allele swap experiment showed the strain CB4856 became as susceptible as the N2 strain by having an N2 cul-6 allele, although having the CB4856 cul-6 allele did not increase resistance in N2. In addition, we found that multiple strains with nonoverlapping introgressions showed a distinct infection phenotype from the parental strain, indicating that there are punctuated locations on chromosome IV determining OrV susceptibility. Thus, our findings reveal the genetic complexity of OrV susceptibility in C. elegans and suggest that viral susceptibility is governed by multiple genes.IMPORTANCE Genetic variation determines the viral susceptibility of hosts. Yet, pinpointing which genetic variants determine viral susceptibility remains challenging. Here, we have exploited the genetic tractability of the model organism Caenorhabditis elegans to dissect the genetic architecture of Orsay virus infection. Our results provide novel insight into natural determinants of Orsay virus infection.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/virologia , Cromossomos/genética , Proteínas Culina/genética , Variação Genética , Nodaviridae/patogenicidade , Locos de Características Quantitativas , Animais , Genes de Helmintos , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Herança Multifatorial , Nodaviridae/fisiologia , Polimorfismo de Nucleotídeo Único , Carga Viral
2.
Heredity (Edinb) ; 128(5): 313-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383317

RESUMO

Most ectotherms obey the temperature-size rule, meaning they grow larger in a colder environment. This raises the question of how the interplay between genes and temperature affects the body size of ectotherms. Despite the growing body of literature on the physiological life-history and molecular genetic mechanism underlying the temperature-size rule, the overall genetic architecture orchestrating this complex phenotype is not yet fully understood. One approach to identify genetic regulators of complex phenotypes is quantitative trait locus (QTL) mapping. Here, we explore the genetic architecture of body-size phenotypes, and plasticity of body-size phenotypes at different temperatures using Caenorhabditis elegans as a model ectotherm. We used 40 recombinant inbred lines (RILs) derived from N2 and CB4856, which were reared at four different temperatures (16, 20, 24, and 26 °C) and measured at two developmental stages (L4 and adult). The animals were measured for body length, width at vulva, body volume, length/width ratio, and seven other body-size traits. The genetically diverse RILs varied in their body-size phenotypes with heritabilities ranging from 0.0 to 0.99. We detected 18 QTL underlying the body-size traits across all treatment combinations, with the majority clustering on Chromosome X. We hypothesize that the Chromosome X QTL could result from a known pleiotropic regulator-npr-1-known to affect the body size of C. elegans through behavioral changes. We also found five plasticity QTL of body-size traits where three colocalized with body-size QTL. In conclusion, our findings shed more light on multiple loci affecting body-size plasticity and the possibility of co-regulation of traits and traits plasticity by the same loci under different environments.


Assuntos
Caenorhabditis elegans , Locos de Características Quantitativas , Animais , Tamanho Corporal/genética , Caenorhabditis elegans/genética , Feminino , Fenótipo , Temperatura
3.
Ecotoxicol Environ Saf ; 233: 113344, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219257

RESUMO

Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While many detoxification genes are homologues to those in mammalians, C. elegans is reported to be deficient in cytochrome CYP1-like P450 metabolism and that its aryl hydrocarbon receptor (AhR) homolog encoded by ahr-1 purportedly does not interact with dioxins or any other known xenobiotic ligand. This suggests that C. elegans is insensitive for compounds that require bioactivation (indirectly acting compounds) and for dioxins or dioxin-like compounds. This study analysed genome-wide gene expression of the nematode in response to 30 µM of aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), Aroclor 1254 (PCB1254), and 10 µM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). After 24 h of exposure in the early L4 larval stage, microarray analysis revealed 182, 86, and 321 differentially expressed genes in the nematodes treated with 30 µM of AFB1, B(a)P, and PCB1254, respectively. Among these genes, many encode xenobiotic-metabolizing enzymes, and their transcription levels were among the highest-ranked fold-changed genes. Interestingly, only one gene (F59B1.8) was upregulated in the nematodes exposed to 10 µM TCDD. Genes related to metabolic processes and catalytic activity were the most induced by exposure to 30 µM of AFB1, B(a)P, and PCB1254. Despite the genotoxic nature of AFB1 and B(a)P, no differential expression was found in the genes encoding DNA repair and cell cycle checkpoint proteins. Analysis of concentration-response curves was performed to determine the Lowest Observed Transcriptomic Effect Levels (LOTEL) of AFB1, B(a)P, and PCB1254. The obtained LOTEL values showed that gene expression changes in C. elegans are more sensitive to toxicants than reproductive effects. Overall, transcriptional responses of metabolic enzymes suggest that the nematode does metabolize AFB1, B(a)P, and PCB1254. Our findings also support the assumption that the transcription factor AhR homolog in C. elegans does not bind typical xenobiotic ligands, rendering the nematode transcriptionally insensitive to TCDD effects.


Assuntos
Proteínas de Caenorhabditis elegans , Dibenzodioxinas Policloradas , Xenobióticos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Reparo do DNA , Expressão Gênica/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Xenobióticos/toxicidade
4.
Arch Environ Contam Toxicol ; 83(3): 284-294, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36190544

RESUMO

With chemical analysis, it is impossible to qualify and quantify the toxic potency of especially hydrophilic bioactive contaminants. In this study, we applied the nematode C. elegans as a model organism for detecting the toxic potency of whole influent wastewater samples. Gene expression in the nematode was used as bioanalytical tool to reveal the presence, type and potency of molecular pathways induced by 24-h exposure to wastewater from a hospital (H), nursing home (N), community (C), and influent (I) and treated effluent (E) from a local wastewater treatment plant. Exposure to influent water significantly altered expression of 464 genes, while only two genes were differentially expressed in nematodes treated with effluent. This indicates a significant decrease in bioactive pollutant-load after wastewater treatment. Surface water receiving the effluent did not induce any genes in exposed nematodes. A subset of 209 genes was differentially expressed in all untreated wastewaters, including cytochromes P450 and C-type lectins related to the nematode's xenobiotic metabolism and immune response, respectively. Different subsets of genes responded to particular waste streams making them candidates to fingerprint-specific wastewater sources. This study shows that gene expression profiling in C. elegans can be used for mechanism-based identification of hydrophilic bioactive compounds and fingerprinting of specific wastewaters. More comprehensive than with chemical analysis, it can demonstrate the effective overall removal of bioactive compounds through wastewater treatment. This bioanalytical tool can also be applied in the process of identification of the bioactive compounds via a process of toxicity identification evaluation.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Caenorhabditis elegans/genética , Citocromos , Perfilação da Expressão Gênica , Lectinas Tipo C , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Água/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Xenobióticos
5.
Mol Ecol ; 30(24): 6776-6790, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534386

RESUMO

Mating dynamics follow from natural selection on mate choice and individuals maximizing their reproductive success. Mate discrimination reveals itself by a plethora of behaviours and morphological characteristics, each of which can be affected by pathogens. A key question is how pathogens affect mate choice and outcrossing behaviour. Here we investigated the effect of Orsay virus on the mating dynamics of the androdiecious (male and hermaphrodite) nematode Caenorhabditis elegans. We tested genetically distinct strains and found that viral susceptibility differed between sexes in a genotype-dependent manner with males of reference strain N2 being more resistant than hermaphrodites. Males displayed a constitutively higher expression of intracellular pathogen response (IPR) genes, whereas the antiviral RNAi response did not have increased activity in males. Subsequent monitoring of sex ratios over 10 generations revealed that viral presence can change mating dynamics in isogenic populations. Sexual attraction assays showed that males preferred mating with uninfected rather than infected hermaphrodites. Together our results illustrate for the first time that viral infection can significantly affect male mating choice and suggest altered mating dynamics as a novel cause benefitting outcrossing under pathogenic stress conditions in C. elegans.


Assuntos
Nodaviridae , Viroses , Animais , Caenorhabditis elegans/genética , Humanos , Masculino , Reprodução/genética , Comportamento Sexual , Comportamento Sexual Animal
6.
Ecotoxicol Environ Saf ; 227: 112923, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34700171

RESUMO

Low concentrations of environmental contaminants can be difficult to detect with current analytical tools, yet they may pose a risk to human and environmental health. The development of bioanalytical tools can help to quantify toxic potencies of biologically active compounds even of hydrophilic contaminants that are hard to extract from water samples. In this study, we exposed the model organism Caenorhabditis elegans synchronized in larval stage L4 to hydrophilic compounds via the water phase and analyzed the effect on gene transcription abundance. The nematodes were exposed to three direct-acting genotoxicants (1 mM and 5 mM): N-ethyl-N-nitrosourea (ENU), formaldehyde (HCHO), and methyl methanesulfonate (MMS). Genome-wide gene expression analysis using microarrays revealed significantly altered transcription levels of 495 genes for HCHO, 285 genes for ENU, and 569 genes for MMS in a concentration-dependent manner. A relatively high number of differentially expressed genes was downregulated, suggesting a general stress in nematodes treated with toxicants. Gene ontology and Kyoto encyclopedia of genes and genomes analysis demonstrated that the upregulated genes were primarily associated with metabolism, xenobiotic detoxification, proteotoxic stress, and innate immune response. Interestingly, genes downregulated by MMS were linked to the inhibition of neurotransmission, and this is in accordance with the observed decreased locomotion in MMS-exposed nematodes. Unexpectedly, the expression level of DNA damage response genes such as cell-cycle checkpoints or DNA-repair proteins were not altered. Overall, the current study shows that gene expression profiling of nematodes can be used to identify the potential mechanisms underlying the toxicity of chemical compounds. C. elegans is a promising test organism to further develop into a bioanalytical tool for quantification of the toxic potency of a wide array of hydrophilic contaminants.


Assuntos
Proteínas de Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Humanos , Água
7.
BMC Biol ; 17(1): 102, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822273

RESUMO

BACKGROUND: The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. RESULTS: Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. CONCLUSION: Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.


Assuntos
Caenorhabditis elegans/fisiologia , Temperatura Alta , Termotolerância , Transcriptoma/fisiologia , Animais , Caenorhabditis elegans/genética
8.
BMC Biol ; 17(1): 24, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866929

RESUMO

BACKGROUND: The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. RESULTS: To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. CONCLUSION: Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs.


Assuntos
Caenorhabditis elegans/genética , Características de História de Vida , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Ligação Genética , Genótipo , Organismos Geneticamente Modificados
9.
BMC Genomics ; 20(1): 232, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894116

RESUMO

BACKGROUND: Accumulation of protein aggregates are a major hallmark of progressive neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Transgenic Caenorhabditis elegans nematodes expressing the human synaptic protein α-synuclein in body wall muscle show inclusions of aggregated protein, which affects similar genetic pathways as in humans. It is not however known how the effects of α-synuclein expression in C. elegans differs among genetic backgrounds. Here, we compared gene expression patterns and investigated the phenotypic consequences of transgenic α-synuclein expression in five different C. elegans genetic backgrounds. RESULTS: Transcriptome analysis indicates that α-synuclein expression effects pathways associated with nutrient storage, lipid transportation and ion exchange and that effects vary depending on the genetic background. These gene expression changes predict that a range of phenotypes will be affected by α-synuclein expression. We confirm this, showing that α-synuclein expression delayed development, reduced lifespan, increased rate of matricidal hatching, and slows pharyngeal pumping. Critically, these phenotypic effects depend on the genetic background and coincide with the core changes in gene expression. CONCLUSIONS: Together, our results show genotype-specific effects and core alterations in both gene expression and in phenotype in response to α-synuclein expression. We conclude that the effects of α-synuclein expression are substantially modified by the genetic background, illustrating that genetic background needs to be considered in C. elegans models of neurodegenerative disease.


Assuntos
Caenorhabditis elegans/genética , Fenótipo , Transcrição Gênica , alfa-Sinucleína/genética , Animais , Caenorhabditis elegans/efeitos dos fármacos , Expressão Gênica , Perfilação da Expressão Gênica , alfa-Sinucleína/toxicidade
10.
BMC Genomics ; 18(1): 500, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662696

RESUMO

BACKGROUND: Cryptic genetic variation (CGV) is the hidden genetic variation that can be unlocked by perturbing normal conditions. CGV can drive the emergence of novel complex phenotypes through changes in gene expression. Although our theoretical understanding of CGV has thoroughly increased over the past decade, insight into polymorphic gene expression regulation underlying CGV is scarce. Here we investigated the transcriptional architecture of CGV in response to rapid temperature changes in the nematode Caenorhabditis elegans. We analyzed regulatory variation in gene expression (and mapped eQTL) across the course of a heat stress and recovery response in a recombinant inbred population. RESULTS: We measured gene expression over three temperature treatments: i) control, ii) heat stress, and iii) recovery from heat stress. Compared to control, exposure to heat stress affected the transcription of 3305 genes, whereas 942 were affected in recovering animals. These affected genes were mainly involved in metabolism and reproduction. The gene expression pattern in recovering animals resembled both the control and the heat-stress treatment. We mapped eQTL using the genetic variation of the recombinant inbred population and detected 2626 genes with an eQTL in the heat-stress treatment, 1797 in the control, and 1880 in the recovery. The cis-eQTL were highly shared across treatments. A considerable fraction of the trans-eQTL (40-57%) mapped to 19 treatment specific trans-bands. In contrast to cis-eQTL, trans-eQTL were highly environment specific and thus cryptic. Approximately 67% of the trans-eQTL were only induced in a single treatment, with heat-stress showing the most unique trans-eQTL. CONCLUSIONS: These results illustrate the highly dynamic pattern of CGV across three different environmental conditions that can be evoked by a stress response over a relatively short time-span (2 h) and that CGV is mainly determined by response related trans regulatory eQTL.


Assuntos
Caenorhabditis elegans/genética , Variação Genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Transcrição Gênica
11.
Genome Res ; 20(7): 929-37, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488933

RESUMO

Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory loci (eQTL) in a population of developing and aging C. elegans recombinant inbred worms. We found almost 900 genes with an eQTL, of which almost half were found to have a genotype-by-age effect ((gxa)eQTL). The total number of eQTL decreased with age, whereas the variation in expression increased. In developing worms, the number of genes with increased expression variation (1282) was similar to the ones with decreased expression variation (1328). In aging worms, the number of genes with increased variation (1772) was nearly five times higher than the number of genes with a decreased expression variation (373). The number of cis-acting eQTL in juveniles decreased by almost 50% in old worms, whereas the number of trans-acting loci decreased by approximately 27%, indicating that cis-regulation becomes relatively less frequent than trans-regulation in aging worms. Of the 373 genes with decreased expression level variation in aging worms, approximately 39% had an eQTL compared with approximately 14% in developing worms. (gxa)eQTL were found for approximately 21% of these genes in aging worms compared with only approximately 6% in developing worms. We highlight three examples of linkages: in young worms (pgp-6), in old worms (daf-16), and throughout life (lips-16). Our findings demonstrate that eQTL patterns are strongly affected by age, and suggest that gene network integrity declines with age.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Genoma , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Mapeamento Cromossômico/métodos , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Marcadores Genéticos/fisiologia , Variação Genética/fisiologia , Genoma/genética , Genótipo , Locos de Características Quantitativas , Fatores de Transcrição/genética
12.
Alcohol Clin Exp Res (Hoboken) ; 47(8): 1505-1517, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356915

RESUMO

BACKGROUND: Genetic variation contributes to the likelihood that an individual will develop an alcohol use disorder (AUD). Traditional laboratory studies in animal models have elucidated the molecular pharmacology of ethanol, but laboratory-derived genetic manipulations rarely model the naturally occurring genetic variation observed in wild populations. Rather, these manipulations are biased toward identifying genes of central importance in the phenotypes. Because changes in such genes can confer selective disadvantages, they are not ideal candidates for carrying AUD risk alleles in humans. We sought to exploit Caenorhabditis elegans to identify allelic variation existing in the wild that modulates ethanol response behaviors. METHODS: We tested the acute ethanol responses of four strains recently isolated from the wild (JU1511, JU1926, JU1931, and JU1941) and 41 multiparental recombinant inbred lines (mpRILs) derived from them. We assessed locomotion at 10, 30, and 50 min on low and high ethanol concentrations. We performed principal component analyses (PCA) on the different phenotypes, tested for transgressive behavior, calculated heritability, and determined the correlations between behavioral responses. RESULTS: We observed a range of responses to ethanol across the strains. We detected a low-concentration locomotor activation effect in some of the mpRILs not seen in the laboratory wild-type strain. PCA showed different ethanol response behaviors to be independent. We observed transgressive behavior for many of the measured phenotypes and found that multiple behaviors were uncorrelated. The average broad-sense heritability for all phenotypes was 23.2%. CONCLUSIONS: Genetic variation significantly affects multiple acute ethanol response behaviors, many of which are independent of one another. This suggests that the genetic variation captured by these strains likely affects multiple biological mechanisms through which ethanol acts. Further study of these strains may allow these distinct mechanisms to be identified.

13.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36861370

RESUMO

Genetic perturbation in different genetic backgrounds can cause a range of phenotypes within a species. These phenotypic differences can be the result of the interaction between the genetic background and the perturbation. Previously, we reported that perturbation of gld-1, an important player in the developmental control of Caenorhabditis elegans, released cryptic genetic variation (CGV) affecting fitness in different genetic backgrounds. Here, we investigated the change in transcriptional architecture. We found 414 genes with a cis-expression quantitative trait locus (eQTL) and 991 genes with a trans-eQTL that were specifically found in the gld-1 RNAi treatment. In total, we detected 16 eQTL hotspots, of which 7 were only found in the gld-1 RNAi treatment. Enrichment analysis of those 7 hotspots showed that the regulated genes were associated with neurons and the pharynx. Furthermore, we found evidence of accelerated transcriptional aging in the gld-1 RNAi-treated nematodes. Overall, our results illustrate that studying CGV leads to the discovery of hidden polymorphic regulators.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Locos de Características Quantitativas , Fenótipo , Proteínas de Caenorhabditis elegans/genética , Variação Genética
14.
Sci Rep ; 11(1): 10993, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040055

RESUMO

Ethanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.


Assuntos
Caenorhabditis elegans , Etanol , Transcriptoma , Consumo de Bebidas Alcoólicas , Animais
15.
Front Cell Infect Microbiol ; 11: 758331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174100

RESUMO

Genetic variation in host populations may lead to differential viral susceptibilities. Here, we investigate the role of natural genetic variation in the Intracellular Pathogen Response (IPR), an important antiviral pathway in the model organism Caenorhabditis elegans against Orsay virus (OrV). The IPR involves transcriptional activity of 80 genes including the pals-genes. We examine the genetic variation in the pals-family for traces of selection and explore the molecular and phenotypic effects of having distinct pals-gene alleles. Genetic analysis of 330 global C. elegans strains reveals that genetic diversity within the IPR-related pals-genes can be categorized in a few haplotypes worldwide. Importantly, two key IPR regulators, pals-22 and pals-25, are in a genomic region carrying signatures of balancing selection, suggesting that different evolutionary strategies exist in IPR regulation. We infected eleven C. elegans strains that represent three distinct pals-22 pals-25 haplotypes with Orsay virus to determine their susceptibility. For two of these strains, N2 and CB4856, the transcriptional response to infection was also measured. The results indicate that pals-22 pals-25 haplotype shapes the defense against OrV and host genetic variation can result in constitutive activation of IPR genes. Our work presents evidence for balancing genetic selection of immunity genes in C. elegans and provides a novel perspective on the functional diversity that can develop within a main antiviral response in natural host populations.


Assuntos
Proteínas de Caenorhabditis elegans , Nodaviridae , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Interações Hospedeiro-Patógeno/genética , Nodaviridae/patogenicidade
16.
PLoS Genet ; 3(3): e34, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17335351

RESUMO

Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature-size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature-size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature-size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 x CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature-size rule, which has puzzled biologists for decades.


Assuntos
Tamanho Corporal/fisiologia , Temperatura Corporal/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Alelos , Animais , Tamanho Corporal/efeitos dos fármacos , Tamanho Corporal/genética , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/genética , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Calpaína , Regulação da Expressão Gênica/efeitos dos fármacos , Genes de Helmintos , Teste de Complementação Genética , Endogamia , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Mutação/genética , Fenótipo , Estrutura Terciária de Proteína , Locos de Características Quantitativas , Análise de Sequência de DNA , Homologia Estrutural de Proteína , Tapsigargina/farmacologia
17.
Front Genet ; 11: 501376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240309

RESUMO

The study of expression quantitative trait loci (eQTL) using natural variation in inbred populations has yielded detailed information about the transcriptional regulation of complex traits. Studies on eQTL using recombinant inbred lines (RILs) led to insights on cis and trans regulatory loci of transcript abundance. However, determining the underlying causal polymorphic genes or variants is difficult, but ultimately essential for the understanding of regulatory networks of complex traits. This requires insight into whether associated loci are single eQTL or a combination of closely linked eQTL, and how this QTL micro-architecture depends on the environment. We addressed these questions by testing for independent replication of previously mapped eQTL in Caenorhabditis elegans using new data from introgression lines (ILs). Both populations indicate that the overall heritability of gene expression, number, and position of eQTL differed among environments. Across environments we were able to replicate 70% of the cis- and 40% of the trans-eQTL using the ILs. Testing eight different simulation models, we suggest that additive effects explain up to 60-93% of RIL/IL heritability for all three environments. Closely linked eQTL explained up to 40% of RIL/IL heritability in the control environment whereas only 7% in the heat-stress and recovery environments. In conclusion, we show that reproducibility of eQTL was higher for cis vs. trans eQTL and that the environment affects the eQTL micro-architecture.

18.
PLoS Genet ; 2(12): e222, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17196041

RESUMO

Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 degrees C and 24 degrees C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii) and N2 (Bristol). No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 degrees C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity.


Assuntos
Caenorhabditis elegans/genética , Animais , Epistasia Genética , Regulação da Expressão Gênica , Genótipo , Polimorfismo Genético , Locos de Características Quantitativas , RNA Mensageiro/genética , Temperatura
19.
Nat Ecol Evol ; 3(10): 1455-1463, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548647

RESUMO

From quorum sensing in bacteria to pheromone signalling in social insects, chemical communication mediates interactions among individuals in local populations. In Caenorhabditis elegans, ascaroside pheromones can dictate local population density; high levels of pheromones inhibit the reproductive maturation of individuals. Little is known about how natural genetic diversity affects the pheromone responses of individuals from diverse habitats. Here, we show that a niche-associated variation in pheromone receptor genes contributes to natural differences in pheromone responses. We identified putative loss-of-function deletions that impair duplicated pheromone receptor genes (srg-36 and srg-37), which were previously shown to be lost in population-dense laboratory cultures. A common natural deletion in srg-37 arose recently from a single ancestral population that spread throughout the world; this deletion underlies reduced pheromone sensitivity across the global C. elegans population. We found that many local populations harbour individuals with a wild-type or a deletion allele of srg-37, suggesting that balancing selection has maintained the recent variation in this pheromone receptor gene. The two srg-37 genotypes are associated with niche diversity underlying boom-and-bust population dynamics. We hypothesize that human activities likely contributed to the gene flow and balancing selection of srg-37 variation through facilitating the migration of species and providing a favourable niche for the recently arisen srg-37 deletion.


Assuntos
Caenorhabditis elegans , Fluxo Gênico , Animais , Feromônios
20.
PLoS One ; 12(12): e0189445, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29228038

RESUMO

There is considerable insight into pathways and genes associated with heat-stress conditions. Most genes involved in stress response have been identified using mutant screens or gene knockdowns. Yet, there is limited understanding of the temporal dynamics of global gene expression in stressful environments. Here, we studied global gene expression profiles during 12 hours of heat stress in the nematode C. elegans. Using a high-resolution time series of increasing stress exposures, we found a distinct shift in gene expression patterns between 3-4 hours into the stress response, separating an initially highly dynamic phase from a later relatively stagnant phase. This turning point in expression dynamics coincided with a phenotypic turning point, as shown by a strong decrease in movement, survival and, progeny count in the days following the stress. Both detectable at transcriptional and phenotypic level, this study pin-points a relatively small time frame during heat stress at which enough damage is accumulated, making it impossible to recover the next few days.


Assuntos
Caenorhabditis elegans/genética , Expressão Gênica , Animais , Resposta ao Choque Térmico/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA