Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(50): 31850-31860, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257549

RESUMO

There is ongoing debate regarding the mechanism through which cation/proton antiporters (CPAs), like Thermus thermophilus NapA (TtNapA) and Escherichia coli NapA (EcNhaA), alternate between their outward- and inward-facing conformations in the membrane. CPAs comprise two domains, and it is unclear whether the transition is driven by their rocking-bundle or elevator motion with respect to each other. Here we address this question using metadynamics simulations of TtNapA, where we bias conformational sampling along two axes characterizing the two proposed mechanisms: angular and translational motions, respectively. By applying the bias potential for the two axes simultaneously, as well as to the angular, but not the translational, axis alone, we manage to reproduce each of the two known states of TtNapA when starting from the opposite state, in support of the rocking-bundle mechanism as the driver of conformational change. Next, starting from the inward-facing conformation of EcNhaA, we sample what could be its long-sought-after outward-facing conformation and verify it using cross-linking experiments.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Thermus thermophilus/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/ultraestrutura , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 112(41): E5575-82, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417087

RESUMO

The Escherichia coli Na(+)/H(+) antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na(+)/H(+) exchangers that control cellular Na(+) and H(+) homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a ß-sheet. Here we examine computationally and experimentally the role of the α-hairpin in the stability, dimerization, transport, and pH regulation of Ec-NhaA. Evolutionary analysis (ConSurf) indicates that the VI-VII helical hairpin is much less conserved than the remaining transmembrane region. Moreover, normal mode analysis also shows that intact NhaA and a variant, deleted of the α-hairpin, share similar dynamics, suggesting that the structure may be dispensable. Thus, two truncated Ec-NhaA mutants were constructed, one deleted of the α-hairpin and another also lacking the ß-sheet. The mutants were studied at physiological pH in the membrane and in detergent micelles. The findings demonstrate that the truncated mutants retain significant activity and regulatory properties but are defective in the assembly/stability of the Ec-NhaA dimer.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Multimerização Proteica , Trocadores de Sódio-Hidrogênio/química , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Mutação , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Trocadores de Sódio-Hidrogênio/genética , Relação Estrutura-Atividade
3.
J Biol Chem ; 288(34): 24666-75, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836890

RESUMO

Na(+)/H(+) antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na(+)/H(+) antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KD(Na) are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15-20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Mutação de Sentido Incorreto , Trocadores de Sódio-Hidrogênio/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia , Estrutura Terciária de Proteína , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
4.
Sci Rep ; 14(1): 5915, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467695

RESUMO

Cell pH and Na+ homeostasis requires Na+/H+ antiporters. The crystal structure of NhaA, the main Escherichia coli Na+/H+ antiporter, revealed a unique NhaA structural fold shared by prokaryotic and eukaryotic membrane proteins. Out of the 12 NhaA transmembrane segments (TMs), TMs III-V and X-XII are topologically inverted repeats with unwound TMs IV and XI forming the X shape characterizing the NhaA fold. We show that intramolecular cross-linking under oxidizing conditions of a NhaA mutant with two Cys replacements across the crossing (D133C-T340C) inhibits antiporter activity and impairs NhaA-dependent cell growth in high-salts. The affinity purified D133C-T340C protein binds Li+ (the Na+ surrogate substrate of NhaA) under reducing conditions. The cross-linking traps the antiporter in an outward-facing conformation, blocking the antiport cycle. As many secondary transporters are found to share the NhaA fold, including some involved in human diseases, our data have importance for both basic and clinical research.


Assuntos
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Escherichia coli/metabolismo , Antiporters/metabolismo , Transporte de Íons , Íons/metabolismo , Concentração de Íons de Hidrogênio
5.
J Biol Chem ; 287(45): 38150-7, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22915592

RESUMO

pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. In most cases, their activity is tightly pH-regulated. NhaA, the main antiporter of Escherichia coli, has homologues in all biological kingdoms. The crystal structure of NhaA provided insights into the mechanism of action and pH regulation of an antiporter. However, the active site of NhaA remained elusive because neither Na(+) nor Li(+), the NhaA ligands, were observed in the structure. Using isothermal titration calorimetry, we show that purified NhaA binds Li(+) in detergent micelles. This interaction is driven by an increase in enthalpy (ΔH of -8000 ± 300 cal/mol and ΔS of -15.2 cal/mol/degree at 283 K), involves a single binding site per NhaA molecule, and is highly specific and drastically dependent on pH; Li(+) binding was observed only at pH 8.5. Combining mutational analysis with the isothermal titration calorimetry measurements revealed that Asp-163, Asp-164, Thr-132, and Asp-133 form the Li(+) binding site, whereas Lys-300 plays an important role in pH regulation of the antiporter.


Assuntos
Proteínas de Escherichia coli/metabolismo , Lítio/metabolismo , Mutação , Trocadores de Sódio-Hidrogênio/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Calorimetria/métodos , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Termodinâmica
6.
J Biol Chem ; 287(22): 18249-61, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22431724

RESUMO

The Escherichia coli NhaA antiporter couples the transport of H(+) and Na(+) (or Li(+)) ions to maintain the proper pH range and Na(+) concentration in cells. A crystal structure of NhaA, solved at pH 4, comprises 12 transmembrane helices (TMs), arranged in two domains, with a large cytoplasm-facing funnel and a smaller periplasm-facing funnel. NhaA undergoes conformational changes, e.g. after pH elevation to alkaline ranges, and we used two computational approaches to explore them. On the basis of pseudo-symmetric features of the crystal structure, we predicted the structural architecture of an alternate, periplasm-facing state. In contrast to the crystal structure, the model presents a closed cytoplasmic funnel, and a periplasmic funnel of greater volume. To examine the transporter functional direction of motion, we conducted elastic network analysis of the crystal structure and detected two main normal modes of motion. Notably, both analyses predicted similar trends of conformational changes, consisting of an overall rotational motion of the two domains around a putative symmetry axis at the funnel centers, perpendicular to the membrane plane. This motion, along with conformational changes within specific helices, resulted in closure at the cytoplasmic end and opening at the periplasmic end. Cross-linking experiments, performed between segments on opposite sides of the cytoplasmic funnel, revealed pH-dependent interactions consistent with the proposed conformational changes. We suggest that the model-structure and predicted motion represent alkaline pH-induced conformational changes, mediated by a cluster of evolutionarily conserved, titratable residues, at the cytoplasmic ends of TMs II, V, and IX.


Assuntos
Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Periplasma/metabolismo , Trocadores de Sódio-Hidrogênio/química , Conformação Proteica
7.
Biochemistry ; 51(47): 9560-9, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23131124

RESUMO

pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and their pH regulation. Functional studies of NhaA in the membrane have yielded valuable information regarding its functionality in situ at physiological pH. Here, we Cys-scanned the discontinuous transmembrane segment (TM) IV (helices IVp and IVc connected by an extended chain) of NhaA to explore its functionality at physiological pH. We then tested the accessibility of the Cys replacements to the positively charged SH reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) and the negatively charged 2-sulfonatoethyl methanethiosulfonate (MTSES) in intact cells at pH 8.5 and 6.5 and in parallel tested their accessibility to MTSET in high-pressure membranes at both pH values. We found that the outer membrane of E. coli TA16 acts as a partially permeable barrier to MTSET. Overcoming this technical problem, we revealed that (a) Cys replacement of the most conserved residues of TM IV strongly increases the apparent K(m) of NhaA to both Na(+) and Li(+), (b) the cationic passage of NhaA at physiological pH is lined by the most conserved and functionally important residues of TM IV, and (c) a pH shift from 6.5 to 8.5 induces conformational changes in helix IVp and in the extended chain at physiological pH.


Assuntos
Proteínas de Escherichia coli/química , Estrutura Secundária de Proteína , Trocadores de Sódio-Hidrogênio/química , Substituição de Aminoácidos , Cátions/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mesilatos/farmacologia , Modelos Moleculares , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
8.
J Biol Chem ; 286(26): 23570-81, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21566125

RESUMO

Using an electrophysiological assay the activity of NhaA was tested in a wide pH range from pH 5.0 to 9.5. Forward and reverse transport directions were investigated at zero membrane potential using preparations with inside-out and right side-out-oriented transporters with Na(+) or H(+) gradients as the driving force. Under symmetrical pH conditions with a Na(+) gradient for activation, both the wt and the pH-shifted G338S variant exhibit highly symmetrical transport activity with bell-shaped pH dependences, but the optimal pH was shifted 1.8 pH units to the acidic range in the variant. In both strains the pH dependence was associated with a systematic increase of the K(m) for Na(+) at acidic pH. Under symmetrical Na(+) concentration with a pH gradient for NhaA activation, an unexpected novel characteristic of the antiporter was revealed; rather than being down-regulated, it remained active even at pH as low as 5. These data allowed a transport mechanism to advance based on competing Na(+) and H(+) binding to a common transport site and a kinetic model to develop quantitatively explaining the experimental results. In support of these results, both alkaline pH and Na(+) induced the conformational change of NhaA associated with NhaA cation translocation as demonstrated here by trypsin digestion. Furthermore, Na(+) translocation was found to be associated with the displacement of a negative charge. In conclusion, the electrophysiological assay allows the revelation of the mechanism of NhaA antiport and sheds new light on the concept of NhaA pH regulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia
9.
J Biol Chem ; 285(3): 2211-20, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19923224

RESUMO

The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5-8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent K(m) to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent K(m) of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp(65) negative charge for pH activation of the antiporter.


Assuntos
Ácido Aspártico/metabolismo , Cátions/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Membrana Celular/efeitos dos fármacos , Simulação por Computador , Sequência Conservada , Cristalografia por Raios X , Cisteína , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Transporte de Íons , Lítio/metabolismo , Mesilatos/farmacologia , Modelos Moleculares , Mutação , Periplasma/metabolismo , Fenótipo , Conformação Proteica , Trocadores de Sódio-Hidrogênio/genética
10.
Nature ; 435(7046): 1197-202, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15988517

RESUMO

The control by Na+/H+ antiporters of sodium/proton concentration and cell volume is crucial for the viability of all cells. Adaptation to high salinity and/or extreme pH in plants and bacteria or in human heart muscles requires the action of Na+/H+ antiporters. Their activity is tightly controlled by pH. Here we present the crystal structure of pH-downregulated NhaA, the main antiporter of Escherichia coli and many enterobacteria. A negatively charged ion funnel opens to the cytoplasm and ends in the middle of the membrane at the putative ion-binding site. There, a unique assembly of two pairs of short helices connected by crossed, extended chains creates a balanced electrostatic environment. We propose that the binding of charged substrates causes an electric imbalance, inducing movements, that permit a rapid alternating-access mechanism. This ion-exchange machinery is regulated by a conformational change elicited by a pH signal perceived at the entry to the cytoplasmic funnel.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Eletricidade Estática , Relação Estrutura-Atividade
11.
Sci Rep ; 9(1): 17662, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776461

RESUMO

Cardiolipin (CL) was shown to bound to the dimer interface of NhaA Na+/H+ antiporter. Here, we explore the cardiolipin-NhaA interaction both in vitro and in vivo. Using a novel and straightforward in-vitro assay in which n-dodecyl ß-D maltoside (DDM) detergent is used to delipidate the dimer interface and to split the dimers into monomers; the monomers are subsequently exposed to cardiolipin or the other E. coli phospholipids. Most efficient reconstitution of dimers is observed by cardiolipin. This assay is likely to be applicable to future studies of protein-lipid interactions. In-vivo experiments further reveal that cardiolipin is necessary for NhaA survival. Although less efficient phosphatidyl-glycerol (PG) can also reconstitute NhaA monomers to dimers. We also identify a putative cardiolipin binding site. Our observations may contribute to drug design, as human NhaA homologues, which are involved in severe pathologies, might also require specific phospholipids.


Assuntos
Cardiolipinas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Sítios de Ligação , Cardiolipinas/farmacologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Fosfolipídeos/metabolismo , Trocadores de Sódio-Hidrogênio/química
12.
J Mol Biol ; 430(6): 867-880, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29410365

RESUMO

Na+/H+ antiporters have a crucial role in pH and Na+ homeostasis in cells. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and revealed a previously unknown structural fold, which has since been identified in several secondary active transporters. This unique structural fold is very delicately electrostatically balanced. Asp133 and Lys 300 have been ascribed essential roles in this balance and, more generally, in the structure and function of the antiporter. In this work, we show the multiple roles of Asp133 in NhaA: (i) The residue's negative charge is critical for the stability of the NhaA structure. (ii) Its main chain is part of the active site. (iii) Its side chain functions as an alkaline-pH-dependent gate, changing the protein's conformation from an inward-facing conformation at acidic pH to an outward-open conformation at alkaline pH, opening the periplasm funnel. On the basis of the experimental data, we propose a tentative mechanism integrating the structural and functional roles of Asp133.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Transporte Biológico , Domínio Catalítico , Cátions/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese , Periplasma/metabolismo , Conformação Proteica , Trocadores de Sódio-Hidrogênio/genética
13.
Nat Commun ; 9(1): 4205, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310075

RESUMO

Cation/proton antiporters (CPAs) play a major role in maintaining living cells' homeostasis. CPAs are commonly divided into two main groups, CPA1 and CPA2, and are further characterized by two main phenotypes: ion selectivity and electrogenicity. However, tracing the evolutionary relationships of these transporters is challenging because of the high diversity within CPAs. Here, we conduct comprehensive evolutionary analysis of 6537 representative CPAs, describing the full complexity of their phylogeny, and revealing a sequence motif that appears to determine central phenotypic characteristics. In contrast to previous suggestions, we show that the CPA1/CPA2 division only partially correlates with electrogenicity. Our analysis further indicates two acidic residues in the binding site that carry the protons in electrogenic CPAs, and a polar residue in the unwound transmembrane helix 4 that determines ion selectivity. A rationally designed triple mutant successfully converted the electrogenic CPA, EcNhaA, to be electroneutral.


Assuntos
Antiporters/classificação , Filogenia , Prótons , Aminoácidos/metabolismo , Sítios de Ligação , Cátions , Humanos , Modelos Moleculares , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Sódio/farmacologia , Valinomicina/farmacologia
14.
J Mol Biol ; 362(2): 192-202, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16919297

RESUMO

Sodium proton antiporters are ubiquitous membrane proteins. Their importance for cell viability is the result of their role in homeostasis of intracellular pH, cellular Na+ content and cell volume. Recently, the first structure of this family of secondary transporters, namely of NhaA from Escherichia coli, revealed a novel fold and elucidated the molecular basis for the mechanism of transport and its regulation by pH. Here, we describe the key steps for the structure determination of NhaA, an iterative process of improving protein quality as well as crystallization conditions. Protein quality was optimized by shortening the purification to a single step and by changing the expression host. The major steps for crystal improvement were the exchange of the detergent during protein purification from the beta- to the alpha-anomer of DDM, the addition of OG to the crystallization set ups, and the growth of the crystals under conditions suitable for cryo-temperatures. Unexpectedly, the dimeric association of the transporter in the 3D crystal lattice is non-physiological. A comparison of the X-ray structure with the electron density map from cryo-electron microscopy of 2D crystals demonstrates that the NhaA helix packing in the 3D crystal is identical with the one in the lipid environment. Thus, the antiporter is in a native conformation in the 3D crystals.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/química , Estrutura Terciária de Proteína , Trocadores de Sódio-Hidrogênio/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/isolamento & purificação
15.
FEBS Lett ; 579(2): 373-8, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15642346

RESUMO

The diuretic drug amiloride and its numerous derivatives are competitive inhibitors of mammalian Na(+)/H(+) antiporters and other eukaryotic antiporters. Most prokaryotic antiporters, including the major NhaA family of enterobacteria, are resistant to these compounds. We show that 2-aminoperimidine (AP), a guanidine-containing naphthalene derivative with some similarity to amiloride, acts as a specific inhibitor of NhaA from Escherichia coli. Similar concentrations (IC(50) of 0.9 muM) inhibit the proton motive force dependent Na(+)(Li(+))/H(+) exchange reaction in inside-out sub-bacterial vesicles (at 10 mM NaCl, pH 8) as well as the initial rate of (22)Na(+)/Na(+) exchange mediated by pure NhaA in proteoliposomes. The inhibitor is specific to NhaA type antiporters, so AP is a new tool to study the mechanism and roles of NhaA antiporters of enterobacteria as well as the molecular basis of inhibition by an amiloride-like compound.


Assuntos
Proteínas de Escherichia coli/antagonistas & inibidores , Quinazolinas/farmacologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Amilorida/análogos & derivados , Membrana Celular/fisiologia , Proteolipídeos/efeitos dos fármacos , Proteolipídeos/fisiologia , Quinazolinas/química , Sódio/metabolismo
16.
PLoS One ; 9(4): e93200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699187

RESUMO

pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. The crystal structure, obtained at pH 4, of NhaA, the main antiporter of Escherichia coli, has provided general insights into an antiporter mechanism and its unique pH regulation. Here, we describe a general method to select various NhaA mutants from a library of randomly mutagenized NhaA. The selected mutants, A167P and F267C are described in detail. Both mutants are expressed in Escherichia coli EP432 cells at 70-95% of the wild type but grow on selective medium only at neutral pH, A167P on Li+ (0.1 M) and F267C on Na+ (0.6 M). Surprising for an electrogenic secondary transporter, and opposed to wild type NhaA, the rates of A167P and F267C are almost indifferent to membrane potential. Detailed kinetic analysis reveals that in both mutants the rate limiting step of the cation exchange cycle is changed from an electrogenic to an electroneutral reaction.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciais da Membrana/fisiologia , Proteínas Mutantes/metabolismo , Mutação/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Eletrofisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformação Proteica , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
17.
J Mol Biol ; 413(3): 604-14, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21907722

RESUMO

The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na(+)/H(+) antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent K(m) of the antiporter to both Na(+) (10-fold) and Li(+) (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size-rather than the chemical modification or the charge-of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Antiporters/química , Membrana Celular/metabolismo , Cisteína/química , Cisteína/genética , Citoplasma/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Transporte de Íons , Modelos Químicos , Mutagênese Sítio-Dirigida , Mutação/genética , Periplasma/metabolismo , Conformação Proteica , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
18.
J Biol Chem ; 284(10): 6337-47, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19129192

RESUMO

A structural model of the NhaA dimer showed that a beta-hairpin of each monomer combines to form a beta-sheet at the periplasmic side of the membrane. By Cys scanning the entire beta-hairpin and testing each Cys replacement for functionality and intermolecular cross-linking, we found that Gln47 and Arg49 are critical for the NhaA dimer and that K57C causes an acidic shift of 1 pH unit to the pH dependence of NhaA. Comparing the growth of the NhaA variants with the previously isolated beta-hairpin deleted mutant (Delta(P45-N58)) and the wild type validated that NhaA dimers have an advantage over monomers in growth under extreme stress conditions and unraveled that during this growth the apparent Km for Na+ of Delta(P45-N58) was increased 50-fold as compared with the wild type. Remarkably, the effect of the extreme stress on the NhaA variants is reversible. Testing the temperature stability (4-55 degrees C) of the NhaA variants in dodecyl maltoside micells showed that the mutants impaired in dimerization were much less temperature-stable than the wild type. We suggest that NhaA dimers are crucial for the stability of the antiporter under extreme stress conditions.


Assuntos
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Estresse Fisiológico/fisiologia , Substituição de Aminoácidos , Dimerização , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Mutação , Estabilidade Proteica , Estrutura Quaternária de Proteína/fisiologia , Estrutura Secundária de Proteína/fisiologia , Trocadores de Sódio-Hidrogênio/genética
19.
J Exp Biol ; 212(Pt 11): 1593-603, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448069

RESUMO

Na(+)/H(+) antiporters are integral membrane proteins that exchange Na(+) for H(+) across the cytoplasmic membrane and many intracellular membranes. They are essential for Na(+), pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na(+)/H(+) antiporters are tightly regulated by pH. Escherichia coli NhaA Na(+)/H(+) antiporter, a prototype pH-regulated antiporter, exchanges 2 H(+) for 1 Na(+) (or Li(+)). The NhaA crystal structure has provided insights into the pH-regulated mechanism of antiporter action and opened up new in silico and in situ avenues of research. The monomer is the functional unit of NhaA yet the dimer is essential for the stability of the antiporter under extreme stress conditions. Ionizable residues of NhaA that strongly interact electrostatically are organized in a transmembrane fashion in accordance with the functional organization of the cation-binding site, ;pH sensor', the pH transduction pathway and the pH-induced conformational changes. Remarkably, NhaA contains an inverted topology motive of transmembrane segments, which are interrupted by extended mid-membrane chains that have since been found to vary in other ion-transport proteins. This novel structural fold creates a delicately balanced electrostatic environment in the middle of the membrane, which might be essential for ion binding and translocation. Based on the crystal structure of NhaA, a model structure of the human Na(+)/H(+) exchanger (NHE1) was constructed, paving the way to a rational drug design.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Trocadores de Sódio-Hidrogênio/genética , Relação Estrutura-Atividade
20.
J Biol Chem ; 283(23): 15975-87, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18387952

RESUMO

The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Trocadores de Sódio-Hidrogênio/química , Substituição de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Mutação Puntual , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA