Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(7): 2944-9, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133616

RESUMO

Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.


Assuntos
Algoritmos , Inteligência Artificial , Corantes Fluorescentes/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Espaço Intracelular/metabolismo , Transporte Proteico/fisiologia , Proteômica/métodos
2.
Curr Biol ; 17(22): 1960-6, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17980596

RESUMO

As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble gamma-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of gamma-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which gamma-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Proteínas dos Microtúbulos/fisiologia , Mitose/fisiologia , Fuso Acromático/metabolismo , Diferenciação Celular/fisiologia , Células HeLa , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/fisiologia
3.
Methods Enzymol ; 414: 530-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17110210

RESUMO

Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cells. These include the establishment of high-throughput transfection and viral propagation methodologies, the production of large-scale cDNA and siRNA libraries, and the development of sensitive assay detection processes and instrumentation. The latter has been significantly facilitated by the implementation of automated microscopy and quantitative image analysis, collectively referred to as high-content screening (HCS), toward cell-based functional genomics application. This technology can be applied to whole genome analysis of discrete molecular and phenotypic events at the level of individual cells and promises to significantly expand the scope of functional genomic analyses in mammalian cells. This chapter provides a comprehensive guide for curating and preparing function genomics libraries and performing HCS at the level of the genome.


Assuntos
Biblioteca Genômica , Genômica/instrumentação , Genômica/métodos , Animais , Automação , Biomarcadores/química , Separação Celular , DNA Complementar/metabolismo , Citometria de Fluxo , Biblioteca Gênica , Genoma Humano , Humanos , Microscopia de Fluorescência/métodos , Plasmídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
4.
Cold Spring Harb Protoc ; 2011(9)2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21880825

RESUMO

The development of cloning vectors for green fluorescent protein (GFP) and the simplicity of yeast reverse genetics allow straightforward labeling of yeast proteins in living cells. Budding and fission yeast are therefore attractive organisms in which to study dynamic cellular processes such as growth, cell division, and morphogenesis using live cell fluorescence microscopy. This article focuses on methods to culture, mount, and observe budding yeast cells using three-dimensional (3D) microscopy, but the methods are broadly applicable to other types of cells and other imaging techniques. The emphasis is on 3D imaging, because yeast cells are roughly spherical, and most organelles in yeast move in three dimensions. Three-dimensional imaging also makes it possible to apply image restoration methods (e.g., deconvolution) to obtain sharper images with better definition. This is important, because yeast cells are small (haploid Saccharomyces cerevisiae cells have a diameter of ~4-5 µm) relative to the resolution of even the best optical microscope (~0.25 µm).


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Saccharomycetales/citologia , Schizosaccharomyces/citologia , Coloração e Rotulagem/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Cell Stem Cell ; 6(1): 37-47, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20085741

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer associated with a very poor prognosis. Recently, the initiation and growth of GBM has been linked to brain tumor-initiating cells (BTICs), which are poorly differentiated and share features with neural stem cells (NSCs). Here we describe a kinome-wide RNA interference screen to identify factors that control the tumorigenicity of BTICs. We identified several genes whose silencing induces differentiation of BTICs derived from multiple GBM patients. In particular, knockdown of the adaptor protein TRRAP significantly increased differentiation of cultured BTICs, sensitized the cells to apoptotic stimuli, and negatively affected cell cycle progression. TRRAP knockdown also significantly suppressed tumor formation upon intracranial BTIC implantation into mice. Together, these findings support a critical role for TRRAP in maintaining a tumorigenic, stem cell-like state.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/análise , Neoplasias Encefálicas/química , Diferenciação Celular , Transformação Celular Neoplásica/química , Glioblastoma/química , Células-Tronco Neoplásicas/química , Proteínas Nucleares/análise , Interferência de RNA , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/citologia , Proteínas Nucleares/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Genome Biol ; 9(2): R44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18302737

RESUMO

BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase. RESULTS: Here we report the identification of genes that, when suppressed, result in structural defects in the mitotic spindle leading to bent, twisted, monopolar, or multipolar spindles, and cause cell cycle arrest. We further describe a novel analysis methodology for large-scale RNA interference datasets that relies on supervised clustering of these genes based on Gene Ontology, protein families, tissue expression, and protein-protein interactions. CONCLUSION: This approach was utilized to classify functionally the identified genes in discrete mitotic processes. We confirmed the identity for a subset of these genes and examined more closely their mechanical role in spindle architecture.


Assuntos
Genoma Humano , Mitose/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Humanos , Interferência de RNA
8.
Proc Natl Acad Sci U S A ; 104(43): 16940-5, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17939994

RESUMO

IkappaB kinase 2 (IKK2 or IKKbeta) is a component of the IKK complex that coordinates the cellular response to a diverse set of extracellular stimuli, including cytokines, microbial infection, and stress. In response to an external stimulus, the complex is activated, resulting in the phosphorylation and subsequent proteasome-mediated degradation of IkappaB proteins. This event triggers the nuclear import of the NF-kappaB transcription factor, which activates the transcription of genes that regulate a variety of fundamental biological processes, including immune response, cell survival, and development. Here, we define an essential role for IKK2 in normal mitotic progression and the maintenance of spindle bipolarity. Chemical and genetic perturbation of IKK2 promotes the formation of multipolar spindles and chromosome missegregation. Depletion of IKK2 results in the deregulation of Aurora A protein stability and coincident hyperactivation of a putative Aurora A substrate, the mitotic motor KIF11. These data support a function for IKK2 as an antagonist of Aurora A signaling during mitosis. Additionally, our results indicate a direct role for IKK2 in the maintenance of genome stability and underscore the potential for oncogenic consequences in targeting this kinase for therapeutic intervention.


Assuntos
Quinase I-kappa B/metabolismo , Fuso Acromático/enzimologia , Aneuploidia , Animais , Aurora Quinase A , Aurora Quinases , Ciclo Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Células HeLa , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/deficiência , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA