Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
RNA ; 25(1): 70-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30309881

RESUMO

Mammalian C to U RNA is mediated by APOBEC1, the catalytic deaminase, together with RNA binding cofactors (including A1CF and RBM47) whose relative physiological requirements are unresolved. Although A1CF complements APOBEC1 for in vitro RNA editing, A1cf-/- mice exhibited no change in apolipoproteinB (apoB) RNA editing, while Rbm47 mutant mice exhibited impaired intestinal RNA editing of apoB as well as other targets. Here we examined the role of A1CF and RBM47 in adult mouse liver and intestine, following deletion of either one or both gene products and also following forced (liver or intestinal) transgenic A1CF expression. There were minimal changes in hepatic and intestinal apoB RNA editing in A1cf-/- mice and no changes in either liver- or intestine-specific A1CF transgenic mice. Rbm47 liver-specific knockout (Rbm47LKO ) mice demonstrated reduced editing in a subset (11 of 20) of RNA targets, including apoB. By contrast, apoB RNA editing was virtually eliminated (<6% activity) in intestine-specific (Rbm47IKO ) mice with only five of 53 targets exhibiting C-to-U RNA editing. Double knockout of A1cf and Rbm47 in liver (ARLKO ) eliminated apoB RNA editing and reduced editing in the majority of other targets, with no changes following adenoviral APOBEC1 administration. Intestinal double knockout mice (ARIKO ) demonstrated further reduced editing (<10% activity) in four of five of the residual APOBEC1 targets identified in ARIKO mice. These data suggest that A1CF and RBM47 each function independently, yet interact in a tissue-specific manner, to regulate the activity and site selection of APOBEC1 dependent C-to-U RNA editing.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Animais , Sequência de Bases , Técnicas de Inativação de Genes , Ribonucleoproteínas Nucleares Heterogêneas/deficiência , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
2.
Am J Hum Genet ; 101(2): 177-191, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777930

RESUMO

Phenotypes are rarely consistent across genetic backgrounds and environments, but instead vary in many ways depending on allelic variants, unlinked genes, epigenetic factors, and environmental exposures. In the extreme, individuals carrying the same causal DNA sequence variant but on different backgrounds can be classified as having distinct conditions. Similarly, some individuals that carry disease alleles are nevertheless healthy despite affected family members in the same environment. These genetic background effects often result from the action of so-called "modifier genes" that modulate the phenotypic manifestation of target genes in an epistatic manner. While complicating the prospects for gene discovery and the feasibility of mechanistic studies, such effects are opportunities to gain a deeper understanding of gene interaction networks that provide organismal form and function as well as resilience to perturbation. Here, we review the principles of modifier genetics and assess progress in studies of modifier genes and their targets in both simple and complex traits. We propose that modifier effects emerge from gene interaction networks whose structure and function vary with genetic background and argue that these effects can be exploited as safe and effective ways to prevent, stabilize, and reverse disease and dysfunction.


Assuntos
Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Genes Modificadores/genética , Fenótipo , Alelos , Animais , Variação Genética/genética , Genótipo , Humanos , Camundongos , Anotação de Sequência Molecular
3.
Proc Natl Acad Sci U S A ; 114(25): E4951-E4960, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584132

RESUMO

Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.


Assuntos
Ataxina-7/genética , Carcinogênese/genética , Cromatina/genética , Elementos de DNA Transponíveis/genética , Genes ras/genética , Mutagênese/genética , Glândula Tireoide/patologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Oncogenes/genética , Fosfatidilinositol 3-Quinases/genética , Carcinoma Anaplásico da Tireoide/genética
4.
BMC Genomics ; 20(1): 497, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208320

RESUMO

BACKGROUND: The introduction of genome-wide shRNA and CRISPR libraries has facilitated cell-based screens to identify loss-of-function mutations associated with a phenotype of interest. Approaches to perform analogous gain-of-function screens are less common, although some reports have utilized arrayed viral expression libraries or the CRISPR activation system. However, a variety of technical and logistical challenges make these approaches difficult for many labs to execute. In addition, genome-wide shRNA or CRISPR libraries typically contain of hundreds of thousands of individual engineered elements, and the associated complexity creates issues with replication and reproducibility for these methods. RESULTS: Here we describe a simple, reproducible approach using the SB transposon system to perform phenotypic cell-based genetic screens. This approach employs only three plasmids to perform unbiased, whole-genome transposon mutagenesis. We also describe a ligation-mediated PCR method that can be used in conjunction with the included software tools to map raw sequence data, identify candidate genes associated with phenotypes of interest, and predict the impact of recurrent transposon insertions on candidate gene function. Finally, we demonstrate the high reproducibility of our approach by having three individuals perform independent replicates of a mutagenesis screen to identify drivers of vemurafenib resistance in cultured melanoma cells. CONCLUSIONS: Collectively, our work establishes a facile, adaptable method that can be performed by labs of any size to perform robust, genome-wide screens to identify genes that influence phenotypes of interest.


Assuntos
Elementos de DNA Transponíveis/genética , Testes Genéticos/métodos , Mutagênese , Fenótipo , Animais , Linhagem Celular , Humanos , Mutagênese/efeitos dos fármacos , Mutagênese Insercional , Vemurafenib/farmacologia
5.
Genome Res ; 26(1): 119-29, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553456

RESUMO

Forward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc. Surprisingly, the majority (∼80%) of LM-PCR identified junction fragments do not lead to observable changes in RNA transcripts. However, in CIS regions, direct transcriptional effects of transposon insertions are observed. We developed an automated method to systematically identify T2/Onc-genome RNA fusion sequences in RNA-seq data. RNA fusion-based CISs were identified corresponding to both DNA-based CISs (Cdkn2a, Mycl1, Nf2, Pten, Sema6d, and Rere) and additional regions strongly associated with cancer that were not observed by LM-PCR (Myc, Akt1, Pth, Csf1r, Fgfr2, Wisp1, Map3k5, and Map4k3). In addition to calculating recurrent CISs, we also present complementary methods to identify potential driver events via determination of strongly supported fusions and fusions with large transcript level changes in the absence of multitumor recurrence. These methods independently identify CIS regions and also point to cancer-associated genes like Braf. We anticipate RNA-seq analyses of tumors from forward genetic screens will become an efficient tool to identify causal events.


Assuntos
Elementos de DNA Transponíveis , Detecção Precoce de Câncer/métodos , Fusão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de RNA , Mapeamento Cromossômico , Bases de Dados Genéticas , Testes Genéticos/métodos , Humanos , Mutagênese Insercional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
6.
Hepatology ; 67(3): 924-939, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28961327

RESUMO

Most hepatocellular carcinomas (HCCs) develop in a chronically injured liver, yet the extent to which this microenvironment promotes neoplastic transformation or influences selective pressures for genetic drivers of HCC remains unclear. We sought to determine the impact of hepatic injury in an established mouse model of HCC induced by Sleeping Beauty transposon mutagenesis. Chemically induced chronic liver injury dramatically increased tumor penetrance and significantly altered driver mutation profiles, likely reflecting distinct selective pressures. In addition to established human HCC genes and pathways, we identified several injury-associated candidates that represent promising loci for further study. Among them, we found that FIGN is overexpressed in human HCC and promotes hepatocyte invasion. We also validated Gli2's oncogenic potential in vivo, providing direct evidence that Hedgehog signaling can drive liver tumorigenesis in the context of chronic injury. Finally, we show that a subset of injury-associated candidate genes identifies two distinct classes of human HCCs. Further analysis of these two subclasses revealed significant trends among common molecular classification schemes of HCC. The genes and mechanisms identified here provide functional insights into the origin of HCC in a chronic liver damage environment. CONCLUSION: A chronically damaged liver microenvironment influences the genetic mechanisms that drive hepatocarcinogenesis. (Hepatology 2018;67:924-939).


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Neoplasias Hepáticas/genética , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Fígado/patologia , Masculino , Camundongos , Mutagênese , Mutação
7.
PLoS Genet ; 9(12): e1003937, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367269

RESUMO

Viral hepatitis, obesity, and alcoholism all represent major risk factors for hepatocellular carcinoma (HCC). Although these conditions also lead to integrated stress response (ISR) or unfolded protein response (UPR) activation, the extent to which these stress pathways influence the pathogenesis of HCC has not been tested. Here we provide multiple lines of evidence demonstrating that the ISR-regulated transcription factor CHOP promotes liver cancer. We show that CHOP expression is up-regulated in liver tumors in human HCC and two mouse models thereof. Chop-null mice are resistant to chemical hepatocarcinogenesis, and these mice exhibit attenuation of both apoptosis and cellular proliferation. Chop-null mice are also resistant to fibrosis, which is a key risk factor for HCC. Global gene expression profiling suggests that deletion of CHOP reduces the levels of basal inflammatory signaling in the liver. Our results are consistent with a model whereby CHOP contributes to hepatic carcinogenesis by promoting inflammation, fibrosis, cell death, and compensatory proliferation. They implicate CHOP as a common contributing factor in the development of HCC in a variety of chronic liver diseases.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , Fator de Transcrição CHOP/biossíntese , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Camundongos , Estresse Fisiológico/genética , Fator de Transcrição CHOP/genética , Resposta a Proteínas não Dobradas/genética
8.
PLoS Genet ; 9(4): e1003441, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593033

RESUMO

We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB-induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB-induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis.


Assuntos
Neoplasias Hepáticas , Proteínas da Gravidez , Retroelementos/genética , Animais , Transformação Celular Neoplásica , Cromossomos Humanos Par 14/metabolismo , Regulação Neoplásica da Expressão Gênica , Impressão Genômica , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Mutação , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Transposases/metabolismo
9.
Hepatology ; 59(1): 202-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23913442

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size. CONCLUSION: Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Proteínas ras/metabolismo
10.
Blood ; 121(21): 4355-8, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23591791

RESUMO

TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eµ-TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica/fisiologia , Testes Genéticos/métodos , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/mortalidade , Camundongos , Camundongos Transgênicos , Mutagênese Insercional/métodos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Transposases/genética , Quinase Induzida por NF-kappaB
11.
BMC Genomics ; 15: 1150, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25526783

RESUMO

BACKGROUND: Animal models of cancer are useful to generate complementary datasets for comparison to human tumor data. Insertional mutagenesis screens, such as those utilizing the Sleeping Beauty (SB) transposon system, provide a model that recapitulates the spontaneous development and progression of human disease. This approach has been widely used to model a variety of cancers in mice. Comprehensive mutation profiles are generated for individual tumors through amplification of transposon insertion sites followed by high-throughput sequencing. Subsequent statistical analyses identify common insertion sites (CISs), which are predicted to be functionally involved in tumorigenesis. Current methods utilized for SB insertion site analysis have some significant limitations. For one, they do not account for transposon footprints - a class of mutation generated following transposon remobilization. Existing methods also discard quantitative sequence data due to uncertainty regarding the extent to which it accurately reflects mutation abundance within a heterogeneous tumor. Additionally, computational analyses generally assume that all potential insertion sites have an equal probability of being detected under non-selective conditions, an assumption without sufficient relevant data. The goal of our study was to address these potential confounding factors in order to enhance functional interpretation of insertion site data from tumors. RESULTS: We describe here a novel method to detect footprints generated by transposon remobilization, which revealed minimal evidence of positive selection in tumors. We also present extensive characterization data demonstrating an ability to reproducibly assign semi-quantitative information to individual insertion sites within a tumor sample. Finally, we identify apparent biases for detection of inserted transposons in several genomic regions that may lead to the identification of false positive CISs. CONCLUSION: The information we provide can be used to refine analyses of data from insertional mutagenesis screens, improving functional interpretation of results and facilitating the identification of genes important in cancer development and progression.


Assuntos
Elementos de DNA Transponíveis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese Insercional , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias/genética
12.
Mamm Genome ; 25(9-10): 473-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802098

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and its prevalence is rising. In the absence of disease progression, fatty liver poses minimal risk of detrimental health outcomes. However, advancement to non-alcoholic steatohepatitis (NASH) confers a markedly increased likelihood of developing severe liver pathologies, including fibrosis, cirrhosis, organ failure, and cancer. Although a substantial percentage of NAFLD patients develop NASH, the genetic and molecular mechanisms driving this progression are poorly understood, making it difficult to predict which patients will ultimately develop advanced liver disease. Deficiencies in mechanistic understanding preclude the identification of beneficial prognostic indicators and the development of effective therapies. Mouse models of progressive NAFLD serve as a complementary approach to the direct analysis of human patients. By providing an easily manipulated experimental system that can be rigorously controlled, they facilitate an improved understanding of disease development and progression. In this review, we discuss genetically- and chemically-induced models of NAFLD that progress to NASH, fibrosis, and liver cancer in the context of the major signaling pathways whose disruption has been implicated as a driving force for their development. Additionally, an overview of nutritional models of progressive NAFLD is provided.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Transdução de Sinais
13.
Hepatology ; 57(1): 120-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22899566

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is one of the deadliest solid cancers and is the third leading cause of cancer-related death. There is a universal estimated male/female ratio of 2.5, but the reason for this is not well understood. The Sleeping Beauty (SB) transposon system was used to elucidate candidate oncogenic drivers of HCC in a forward genetics screening approach. Sex bias occurrence was conserved in our model, with male experimental mice developing liver tumors at reduced latency and higher tumor penetrance. In parallel, we explored sex differences regarding genomic aberrations in 235 HCC patients. Liver cancer candidate genes were identified from both sexes and genotypes. Interestingly, transposon insertions in the epidermal growth factor receptor (Egfr) gene were common in SB-induced liver tumors from male mice (10/10, 100%) but infrequent in female mice (2/9, 22%). Human single-nucleotide polymorphism data confirmed that polysomy of chromosome 7, locus of EGFR, was more frequent in males (26/62, 41%) than females (2/27, 7%) (P = 0.001). Gene expression-based Poly7 subclass patients were predominantly male (9/9) compared with 67% males (55/82) in other HCC subclasses (P = 0.02), and this subclass was accompanied by EGFR overexpression (P < 0.001). CONCLUSION: Sex bias occurrence of HCC associated with EGFR was confirmed in experimental animals using the SB transposon system in a reverse genetic approach. This study provides evidence for the role of EGFR in sex bias occurrences of liver cancer and as the driver mutational gene in the Poly7 molecular subclass of human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Cromossomos Humanos Par 7 , Receptores ErbB/genética , Neoplasias Hepáticas/genética , Fatores Sexuais , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica , Elementos de DNA Transponíveis , Feminino , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Insercional , beta Catenina/metabolismo
14.
NAR Cancer ; 6(1): zcad061, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213996

RESUMO

The evolution of therapeutic resistance is a major obstacle to the success of targeted oncology drugs. While both inter- and intratumoral heterogeneity limit our ability to detect resistant subpopulations that pre-exist or emerge during treatment, our ability to analyze tumors with single-cell resolution is limited. Here, we utilized a cell-based transposon mutagenesis method to identify mechanisms of BRAF inhibitor resistance in a model of cutaneous melanoma. This screen identified overexpression of NEDD4L and VGLL3 as significant drivers of BRAF inhibitor resistance in vivo. In addition, we describe a novel single-cell genomics profiling method to genotype thousands of individual cells within tumors driven by transposon mutagenesis. This approach revealed a surprising genetic diversity among xenograft tumors and identified recurrent co-occurring mutations that emerge within distinct tumor subclones. Taken together, these observations reveal an unappreciated genetic complexity that drives BRAF inhibitor resistance.

15.
iScience ; 26(10): 107805, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860756

RESUMO

Combined BRAF and MEK inhibition is an effective treatment for BRAF-mutant cutaneous melanoma. However, most patients progress on this treatment due to drug resistance. Here, we applied the Sleeping Beauty transposon system to understand how melanoma evades MAPK inhibition. We found that the specific drug resistance mechanisms differed across melanomas in our genetic screens of five cutaneous melanoma cell lines. While drivers that reactivated MAPK were highly conserved, many others were cell-line specific. One such driver, VAV1, activated a de-differentiated transcriptional program like that of hyperactive RAC1, RAC1P29S. To target this mechanism, we showed that an inhibitor of SRC, saracatinib, blunts the VAV1-induced transcriptional reprogramming. Overall, we highlighted the importance of accounting for melanoma heterogeneity in treating cutaneous melanoma with MAPK inhibitors. Moreover, we demonstrated the utility of the Sleeping Beauty transposon system in understanding cancer drug resistance.

16.
NPJ Precis Oncol ; 6(1): 74, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271142

RESUMO

Rare gain-of-function mutations in RAC1 drive drug resistance to targeted BRAF inhibition in cutaneous melanoma. Here, we show that wildtype RAC1 is a critical driver of growth and drug resistance, but only in a subset of melanomas with elevated markers of de-differentiation. Similarly, SRC inhibition also selectively sensitized de-differentiated melanomas to BRAF inhibition. One possible mechanism may be the suppression of the de-differentiated state, as SRC and RAC1 maintained markers of de-differentiation in human melanoma cells. The functional differences between melanoma subtypes suggest that the clinical management of cutaneous melanoma can be enhanced by the knowledge of differentiation status. To simplify the task of classification, we developed a binary classification strategy based on a small set of ten genes. Using this gene set, we reliably determined the differentiation status previously defined by hundreds of genes. Overall, our study informs strategies that enhance the precision of BRAFi by discovering unique vulnerabilities of the de-differentiated cutaneous melanoma subtype and creating a practical method to resolve differentiation status.

17.
J Hematol Oncol ; 14(1): 203, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876184

RESUMO

Unbiased genetic forward screening using retroviral insertional mutagenesis in a genetically engineered mouse model of human multiple myeloma may further our understanding of the genetic pathways that govern neoplastic plasma cell development. To evaluate this hypothesis, we performed a tumor induction study in MYC-transgenic mice infected as neonates with the Moloney-derived murine leukemia virus, MOL4070LTR. Next-generation DNA sequencing of proviral genomic integration sites yielded rank-ordered candidate tumor progression genes that accelerated plasma cell neoplasia in mice. Rigorous clinical and biological validation of these genes led to the discovery of two novel myeloma genes: WDR26 (WD repeat-containing protein 26) and MTF2 (metal response element binding transcription factor 2). WDR26, a core component of the carboxy-terminal to LisH (CTLH) complex, is overexpressed or mutated in solid cancers. MTF2, an ancillary subunit of the polycomb repressive complex 2 (PRC2), is a close functional relative of PHD finger protein 19 (PHF19) which is currently emerging as an important driver of myeloma. These findings underline the utility of genetic forward screens in mice for uncovering novel blood cancer genes and suggest that WDR26-CTLH and MTF2-PRC2 are promising molecular targets for new approaches to myeloma treatment and prevention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mieloma Múltiplo/genética , Complexo Repressor Polycomb 2/genética , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mieloma Múltiplo/terapia
18.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33445170

RESUMO

The RNA-binding protein Apobec1 complementation factor (A1CF) regulates posttranscriptional ApoB mRNA editing, but the range of RNA targets and the long-term effect of altered A1CF expression on liver function are unknown. Here we studied hepatocyte-specific A1cf-transgenic (A1cf+/Tg), A1cf+/Tg Apobec1-/-, and A1cf-/- mice fed chow or high-fat/high-fructose diets using RNA-Seq, RNA CLIP-Seq, and tissue microarrays from human hepatocellular cancer (HCC). A1cf+/Tg mice exhibited increased hepatic proliferation and steatosis, with increased lipogenic gene expression (Mogat1, Mogat2, Cidea, Cd36) associated with shifts in polysomal RNA distribution. Aged A1cf+/Tg mice developed spontaneous fibrosis, dysplasia, and HCC, and this development was accelerated on a high-fat/high-fructose diet and was independent of Apobec1. RNA-Seq revealed increased expression of mRNAs involved in oxidative stress (Gstm3, Gpx3, Cbr3), inflammatory response (Il19, Cxcl14, Tnfα, Ly6c), extracellular matrix organization (Mmp2, Col1a1, Col4a1), and proliferation (Kif20a, Mcm2, Mcm4, Mcm6), and a subset of mRNAs (including Sox4, Sox9, Cdh1) were identified in RNA CLIP-Seq. Increased A1CF expression in human HCC correlated with advanced fibrosis and with reduced survival in a subset with nonalcoholic fatty liver disease. In conclusion, we show that hepatic A1CF overexpression selectively alters polysomal distribution and mRNA expression, promoting lipogenic, proliferative, and inflammatory pathways leading to HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Ligação a RNA/genética
19.
Cancer Res ; 79(19): 5074-5087, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416844

RESUMO

The use of selective BRAF inhibitors (BRAFi) has produced remarkable outcomes for patients with advanced cutaneous melanoma harboring a BRAFV600E mutation. Unfortunately, the majority of patients eventually develop drug-resistant disease. We employed a genetic screening approach to identify gain-of-function mechanisms of BRAFi resistance in two independent melanoma cell lines. Our screens identified both known and unappreciated drivers of BRAFi resistance, including multiple members of the DBL family. Mechanistic studies identified a DBL/RAC1/PAK signaling axis capable of driving resistance to both current and next-generation BRAFis. However, we show that the SRC inhibitor, saracatinib, can block the DBL-driven resistance. Our work highlights the utility of our straightforward genetic screening method in identifying new drug combinations to combat acquired BRAFi resistance. SIGNIFICANCE: A simple, rapid, and flexible genetic screening approach identifies genes that drive resistance to MAPK inhibitors when overexpressed in human melanoma cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Melanoma/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Cutâneas/genética , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Humanos , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Vemurafenib/farmacologia , Quinases da Família src/metabolismo , Melanoma Maligno Cutâneo
20.
Cell Rep ; 22(5): 1211-1224, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386109

RESUMO

Given its role as the source of definitive hematopoietic cells, we sought to determine whether mutations initiated in the hemogenic endothelium would yield hematopoietic abnormalities or malignancies. Here, we find that endothelium-specific transposon mutagenesis in mice promotes hematopoietic pathologies that are both myeloid and lymphoid in nature. Frequently mutated genes included previously recognized cancer drivers and additional candidates, such as Pi4ka, a lipid kinase whose mutation was found to promote myeloid and erythroid dysfunction. Subsequent validation experiments showed that targeted inactivation of the Pi4ka catalytic domain or reduction in mRNA expression inhibited myeloid and erythroid cell differentiation in vitro and promoted anemia in vivo through a mechanism involving deregulation of AKT, MAPK, SRC, and JAK-STAT signaling. Finally, we provide evidence linking PI4KAP2, previously considered a pseudogene, to human myeloid and erythroid leukemia.


Assuntos
Eritropoese/fisiologia , Leucemia/genética , Antígenos de Histocompatibilidade Menor/genética , Mielopoese/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Diferenciação Celular/genética , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/metabolismo , Mutagênese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA