Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Can Commun Dis Rep ; 49(10): 446-456, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38481649

RESUMO

Context: Environmental changes will foster the spread of Ixodes scapularis ticks and increase the incidence of Lyme disease in Québec in the coming years. The objective of this study is to estimate the epidemiological and clinical burden and part of the current economic burden of Lyme disease in Québec and to estimate the number of cases expected by 2050. Methods: Cases of Lyme disease reported in Québec from 2015 to 2019 were used to describe their demographic, geographical and clinical characteristics and the cost of their initial care. Three incidence rate scenarios were then developed to estimate the number of cases expected by 2050, based on demographic and climate projections. Results: From 2016 to 2019, 1,473 cases of Lyme disease were reported in Québec. Over 90% of those cases were acquired in two regions of southern Québec (Estrie and Montérégie), while the individuals infected were residents from all over Québec. The average age of cases is 44 years and 66% of infections were at the localized stage, the first stage of Lyme disease. The cost of initial care is estimated at an average of $182 CAN per patient ($47 CAN at the localized stage and $443 CAN at the disseminated stage). According to projections, over 95% of the Québec population will live in a climate zone conducive to the establishment of ticks by 2050, with a number of cases acquired in Québec being 1.3 to 14.5 times higher than in 2019, depending on the incidence rate scenario used. Conclusion: The epidemiological burden is concentrated primarily in southern Québec, but the clinical and economic burden is already distributed throughout the province. The projections for 2050 should help the regions of Québec adapt and optimize public health protection measures.

2.
Can Commun Dis Rep ; 49(6): 288-298, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38444700

RESUMO

Background: Ixodes scapularis and Ixodes pacificus ticks are the principal vectors of the agent of Lyme disease and several other tick-borne diseases in Canada. Tick surveillance data can be used to identify local tick-borne disease risk areas and direct public health interventions. The objective of this article is to describe the seasonal and spatial characteristics of the main Lyme disease vectors in Canada, and the tick-borne pathogens they carry, using passive and active surveillance data from 2020. Methods: Passive and active surveillance data were compiled from the National Microbiology Laboratory Branch (Public Health Agency of Canada), provincial and local public health authorities, and eTick (an online, image-based platform). Seasonal and spatial analyses of ticks and their associated pathogens are presented, including infection prevalence estimates. Results: In passive surveillance, I. scapularis (n=7,534) were submitted from all provinces except Manitoba and British Columbia, while I. pacificus (n=718) were submitted only from British Columbia. No ticks were submitted from the Territories. The seasonal distribution of I. scapularis submissions was bimodal, but unimodal for I. pacificus. Four tick-borne pathogens were identified in I. scapularis (Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti and Borrelia miyamotoi) and one in I. pacificus (B. miyamotoi). In active surveillance, I. scapularis (n=688) were collected in Ontario, Québec and New Brunswick. Five tick-borne pathogens were identified: B. burgdorferi, A. phagocytophilum, B. microti, B. miyamotoi and Powassan virus. Conclusion: This article provides a snapshot of the distribution of I. scapularis and I. pacificus and their associated human pathogens in Canada in 2020, which can help assess the risk of exposure to tick-borne pathogens in different provinces.

3.
PLoS One ; 17(2): e0263243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113941

RESUMO

The incidence of Lyme disease is increasing in Québec and is closely linked to the distribution of Ixodes scapularis ticks. A time-to-establishment model developed in 2012 by Leighton and colleagues predicted the year of tick population establishment for each municipality in eastern Canada. To validate if this model correctly predicted tick distribution in Québec, predicted tick establishment was compared to field data from active tick surveillance (2010-2018) using two criteria: i) the detection of at least one tick and ii) the detection of the three questing stages of the tick. The speed of tick establishment and the increase in the exposed human population by 2100 were predicted with the time-to-establishment model. Field observations were consistent with model predictions. Ticks were detected on average 3 years after the predicted year. The probability of tick detection is significantly higher after the predicted year than before (61% vs 27% of collections). The trend was similar for the detection of three tick stages (16% vs 9% of collections). The average speed of tick range expansion was estimated by the model to be 18 km/year in Québec, with 90% of the human population exposed by 2027. The validation of the time-to-establishment model using field data confirmed that it could be used to project I. scapularis range expansion in Québec, and consequently the increase in Lyme disease risk over the coming decades. This will help public health authorities anticipate and adapt preventive measures, especially in areas not yet affected by Lyme disease.


Assuntos
Ixodes/microbiologia , Ixodes/fisiologia , Migração Animal , Animais , Vetores Aracnídeos , Borrelia burgdorferi , Sistemas de Informação Geográfica , Geografia , Humanos , Doença de Lyme/epidemiologia , Saúde Pública , Quebeque , Reprodutibilidade dos Testes , Infestações por Carrapato/epidemiologia
4.
Pathogens ; 11(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35631052

RESUMO

Lyme disease (LD) is a tick-borne disease which has been emerging in temperate areas in North America, Europe, and Asia. In Quebec, Canada, the number of human LD cases is increasing rapidly and thus surveillance of LD risk is a public health priority. In this study, we aimed to evaluate the ability of active sentinel surveillance to track spatiotemporal trends in LD risk. Using drag flannel data from 2015-2019, we calculated density of nymphal ticks (DON), an index of enzootic hazard, across the study region (southern Quebec). A Poisson regression model was used to explore the association between the enzootic hazard and LD risk (annual number of human cases) at the municipal level. Predictions from models were able to track both spatial and interannual variation in risk. Furthermore, a risk map produced by using model predictions closely matched the official risk map published by provincial public health authorities, which requires the use of complex criteria-based risk assessment. Our study shows that active sentinel surveillance in Quebec provides a sustainable system to follow spatiotemporal trends in LD risk. Such a network can support public health authorities in informing the public about LD risk within their region or municipality and this method could be extended to support Lyme disease risk assessment at the national level in Canada.

5.
PLoS One ; 16(10): e0258466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637465

RESUMO

Lyme disease (LD) is an emerging public health threat in Canada, associated with the northward range expansion of the black-legged tick (Ixodes scapularis). To address this, public health authorities have been carrying out surveillance activities and awareness campaigns targeting vulnerable populations such as outdoor workers. Implementing these measures is time-consuming and resource-intensive, prompting the assessment of alternatives. Our goal was to evaluate the feasibility and implementation of a training-of-trainers-inspired approach in raising awareness about LD risk and prevention among workers and general population, as well as to evaluate its potential to contribute to provincial LD surveillance efforts. We trained a group of workers from publicly-accessible outdoor parks of the province of Québec to become "LD education ambassadors". Ambassadors were trained to raise tick and LD awareness, share information on preventive measures in their respective communities, and lead tick sampling activities using a standardised protocol similar to that used by Public Health authorities. Ambassador-led outreach activities, public reach, sampling activities and collected ticks were documented, as well as ambassadors' satisfaction with the training using forms and semi-structured interviews. In total, 18 ambassadors from 12 organizations were trained. Between June and September 2019, they led 28 independent outreach activities, reaching over 1 860 individuals (from occupational and general public settings) in seven public health units. Ambassadors led 28 tick samplings, together collecting 11 I. scapularis ticks. This study suggests that an adapted training-of-trainers is a feasible approach to raising tick and LD risk awareness among Québec outdoor workers and public. Trained ambassadors have the potential of reaching a large portion of the population visiting or working in outdoor parks while also providing much-needed outreach regarding risk and prevention. Pushing this concept further to include other types of workers and jurisdictions may contribute to national LD surveillance efforts.


Assuntos
Doença de Lyme/prevenção & controle , Voluntários/educação , Adulto , Animais , Canadá , Feminino , Humanos , Ixodes/fisiologia , Doença de Lyme/parasitologia , Masculino , Pessoa de Meia-Idade , Vigilância da População/métodos , Quebeque
6.
Can Commun Dis Rep ; 46(10): 354-361, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315999

RESUMO

BACKGROUND: Lyme disease is an emerging vector-borne zoonotic disease of increasing public health importance in Canada. As part of its mandate, the Canadian Lyme Disease Research Network (CLyDRN) launched a pan-Canadian sentinel surveillance initiative, the Canadian Lyme Sentinel Network (CaLSeN), in 2019. OBJECTIVES: To create a standardized, national sentinel surveillance network providing a real-time portrait of the evolving environmental risk of Lyme disease in each province. METHODS: A multicriteria decision analysis (MCDA) approach was used in the selection of sentinel regions. Within each sentinel region, a systematic drag sampling protocol was performed in selected sampling sites. Ticks collected during these active surveillance visits were identified to species, and Ixodes spp. ticks were tested for infection with Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, Babesia microti and Powassan virus. RESULTS: In 2019, a total of 567 Ixodes spp. ticks (I. scapularis [n=550]; I. pacificus [n=10]; and I. angustus [n=7]) were collected in seven provinces: British Columbia, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia and Prince Edward Island. The highest mean tick densities (nymphs/100 m2) were found in sentinel regions of Lunenburg (0.45), Montréal (0.43) and Granby (0.38). Overall, the Borrelia burgdorferi prevalence in ticks was 25.2% (0%-45.0%). One I. angustus nymph from British Columbia was positive for Babesia microti, a first for the province. The deer tick lineage of Powassan virus was detected in one adult I. scapularis in Nova Scotia. CONCLUSION: CaLSeN provides the first coordinated national active surveillance initiative for tick-borne disease in Canada. Through multidisciplinary collaborations between experts in each province, the pilot year was successful in establishing a baseline for Lyme disease risk across the country, allowing future trends to be detected and studied.

7.
J Med Entomol ; 56(3): 859-872, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30753555

RESUMO

Since 2002, human cases of West Nile virus (WNV) have occurred every year in southern Canada, but WNV risk remains challenging to predict. Here, we explored the ability of weather-based forecasting models to predict the seasonal abundance of two WNV vector species (Culex pipiens-restuans and Aedes vexans) in Québec, Canada, and explored the importance of accounting for larvicide use and local habitat (forest park vs residential garden). A gamma-generalized linear model predicting mosquito abundance was developed based on an approach previously used in Ontario combining temperature and precipitation during the days preceding mosquito captures. This model was calibrated and validated for each species with independent entomological datasets from the Montréal region collected in 2013 and 2014. Culex pipiens-restuans abundance was associated with mean degree days (dd; >9°C) over the 22 d before mosquito capture and with mean precipitation over the 71 d before capture; Ae. vexans abundance with the mean dd (>12°C) over the 24 d before capture and mean precipitation over the 30 d before capture. These results are consistent with temperature effects on immature development rates and adult activity, and effects of precipitation on the abundance and suitability of breeding sites. Taking into account larvicide use and habitat significantly improved the predictions. This study provides evidence that weather conditions can yield robust short-term predictions of the regional daily mosquito abundance, particularly when accounting for local variation in habitat or mosquito control efforts, and may provide real-time indicators of WNV or other mosquito-borne disease risks during the summer.


Assuntos
Aedes/fisiologia , Culex/fisiologia , Mosquitos Vetores/fisiologia , Tempo (Meteorologia) , Animais , Dinâmica Populacional , Quebeque , Estações do Ano , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia
8.
PLoS One ; 14(2): e0212637, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779789

RESUMO

Lyme disease, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi sensu stricto, which is transmitted by Ixodes scapularis in eastern Canada and Ixodes pacificus in western Canada. Recently, the northward range expansion of I. scapularis ticks, in south-eastern Canada, has resulted in a dramatic increase in the incidence of human Lyme disease. Detecting emerging areas of Lyme disease risk allows public health to target disease prevention efforts. We analysed passive tick surveillance data from Ontario and Manitoba to i) assess the relationship between the total numbers of I. scapularis submissions in passive surveillance from humans, and the number of human Lyme disease cases, and ii) develop province-specific acarological indicators of risk that can be used to generate surveillance-based risk maps. We also assessed associations between numbers of nymphal I. scapularis tick submissions only and Lyme disease case incidence. Using General Estimating Equation regression, the relationship between I. scapularis submissions (total numbers and numbers of nymphs only) in each census sub-division (CSD) and the number of reported Lyme disease cases was positively correlated and highly significant in the two provinces (P ≤ 0.001). The numbers of I. scapularis submissions over five years discriminated CSDs with ≥ 3 Lyme disease cases from those with < 3 cases with high accuracy when using total numbers of tick submission (Receiver Operating Characteristics area under the curve [AUC] = 0.89) and moderate accuracy (AUC = 0.78) when using nymphal tick submissions only. In Ontario the optimal cut-off point was a total 12 tick submissions from a CSD over five years (Sensitivity = 0.82, Specificity = 0.84), while in Manitoba the cut-off point was five ticks (Sensitivity = 0.71, Specificity = 0.79) suggesting regional variability of the risk of acquiring Lyme disease from an I. scapularis bite. The performances of the acarological indicators developed in this study for Ontario and Manitoba support the ability of passive tick surveillance to provide an early signal of the existence Lyme disease risk areas in regions where ticks and the pathogens they transmit are expanding their range.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Animais , Feminino , Humanos , Doença de Lyme/diagnóstico , Masculino , Manitoba/epidemiologia , Ontário/epidemiologia , Medição de Risco
9.
Artigo em Inglês | MEDLINE | ID: mdl-29584627

RESUMO

Since its detection in Canada in the early 1990s, Ixodes scapularis, the primary tick vector of Lyme disease in eastern North America, has continued to expand northward. Estimates of the tick's broad-scale distribution are useful for tracking the extent of the Lyme disease risk zone; however, tick distribution may vary widely within this zone. Here, we investigated I. scapularis nymph distribution at three spatial scales across the Lyme disease emergence zone in southern Quebec, Canada. We collected ticks and compared the nymph densities among different woodlands and different plots and transects within the same woodland. Hot spot analysis highlighted significant nymph clustering at each spatial scale. In regression models, nymph abundance was associated with litter depth, humidity, and elevation, which contribute to a suitable habitat for ticks, but also with the distance from the trail and the type of trail, which could be linked to host distribution and human disturbance. Accounting for this heterogeneous nymph distribution at a fine spatial scale could help improve Lyme disease management strategies but also help people to understand the risk variation around them and to adopt appropriate behaviors, such as staying on the trail in infested parks to limit their exposure to the vector and associated pathogens.


Assuntos
Ixodes , Doença de Lyme/transmissão , Animais , Análise por Conglomerados , Ecossistema , Doença de Lyme/epidemiologia , Ninfa , Densidade Demográfica , Quebeque/epidemiologia , Risco
10.
J Med Entomol ; 55(4): 1016-1026, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29522180

RESUMO

Lyme disease is an emerging public health threat in Canada. In this context, rapid detection of new risk areas is essential for timely application of prevention and control measures. In Canada, information on Lyme disease risk is collected through three surveillance activities: active tick surveillance, passive tick surveillance, and reported human cases. However, each method has shortcomings that limit its ability to rapidly and reliably identify new risk areas. We investigated the relationships between risk signals provided by human cases, passive and active tick surveillance to assess the performance of tick surveillance for early detection of emerging risk areas. We used regression models to investigate the relationships between the reported human cases, Ixodes scapularis (Say; Acari: Ixodidae) ticks collected on humans through passive surveillance and the density of nymphs collected by active surveillance from 2009 to 2014 in the province of Quebec. We then developed new risk indicators and validated their ability to discriminate risk levels used by provincial public health authorities. While there was a significant positive relationship between the risk signals provided all three surveillance methods, the strongest association was between passive tick surveillance and reported human cases. Passive tick submissions were a reasonable indicator of the abundance of ticks in the environment (sensitivity and specificity [Se and Sp] < 0.70), but were a much better indicator of municipalities with more than three human cases reported over 5 yr (Se = 0.88; Sp = 0.90). These results suggest that passive tick surveillance provides a timely and reliable signal of emerging risk areas for Lyme disease in Canada.


Assuntos
Ixodes/fisiologia , Doença de Lyme/epidemiologia , Vigilância da População/métodos , Infestações por Carrapato/epidemiologia , Animais , Monitoramento Epidemiológico , Humanos , Ixodes/crescimento & desenvolvimento , Doença de Lyme/microbiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Densidade Demográfica , Quebeque/epidemiologia , Análise de Regressão , Fatores de Risco , Infestações por Carrapato/parasitologia
11.
Environ Health Perspect ; 126(4): 047008, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29671475

RESUMO

BACKGROUND: The risk of contracting Lyme disease (LD) can vary spatially because of spatial heterogeneity in risk factors such as social-behavior and exposure to ecological risk factors. Integrating these risk factors to inform decision-making should therefore increase the effectiveness of mitigation interventions. OBJECTIVES: The objective of this study was to develop an integrated social-behavioral and ecological risk-mapping approach to identify priority areas for LD interventions. METHODS: The study was conducted in the Montérégie region of Southern Quebec, Canada, where LD is a newly endemic disease. Spatial variation in LD knowledge, risk perceptions, and behaviors in the population were measured using web survey data collected in 2012. These data were used as a proxy for the social-behavioral component of risk. Tick vector population densities were measured in the environment during field surveillance from 2007 to 2012 to provide an index of the ecological component of risk. Social-behavioral and ecological components of risk were combined with human population density to create integrated risk maps. Map predictions were validated by testing the association between high-risk areas and the current spatial distribution of human LD cases. RESULTS: Social-behavioral and ecological components of LD risk had markedly different distributions within the study region, suggesting that both factors should be considered for locally adapted interventions. The occurrence of human LD cases in a municipality was positively associated with tick density (p<0.01) but was not significantly associated with social-behavioral risk. CONCLUSION: This study is an applied demonstration of how integrated social-behavioral and ecological risk maps can be created to assist decision-making. Social survey data are a valuable but underutilized source of information for understanding regional variation in LD exposure, and integrating this information into risk maps provides a novel approach for prioritizing and adapting interventions to the local characteristics of target populations. https://doi.org/10.1289/EHP1943.


Assuntos
Mapeamento Geográfico , Doença de Lyme/epidemiologia , Medição de Risco/métodos , Humanos , Doença de Lyme/microbiologia , Prevalência , Quebeque/epidemiologia , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA