Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992362

RESUMO

New World alphaviruses including Venezuelan Equine Encephalitis Virus (VEEV) and Eastern Equine Encephalitis Virus (EEEV) are mosquito-transmitted viruses that cause disease in humans and equines. There are currently no FDA-approved therapeutics or vaccines to treat or prevent exposure-associated encephalitic disease. The ubiquitin proteasome system (UPS)-associated signaling events are known to play an important role in the establishment of a productive infection for several acutely infectious viruses. The critical engagement of the UPS-associated signaling mechanisms by many viruses as host-pathogen interaction hubs led us to hypothesize that small molecule inhibitors that interfere with these signaling pathways will exert broad-spectrum inhibitory activity against alphaviruses. We queried eight inhibitors of the UPS signaling pathway for antiviral outcomes against VEEV. Three of the tested inhibitors, namely NSC697923 (NSC), bardoxolone methyl (BARM) and omaveloxolone (OMA) demonstrated broad-spectrum antiviral activity against VEEV and EEEV. Dose dependency and time of addition studies suggest that BARM and OMA exhibit intracellular and post-entry viral inhibition. Cumulatively, our studies indicate that inhibitors of the UPS-associated signaling pathways exert broad-spectrum antiviral outcomes in the context of VEEV and EEEV infection, supporting their translational application as therapeutic candidates to treat alphavirus infections.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Humanos , Cavalos , Animais , Antivirais/farmacologia , Ubiquitina , Transdução de Sinais
2.
bioRxiv ; 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817953

RESUMO

In an effort to identify therapeutic intervention strategies for the treatment of COVID-19, we have investigated a selection of FDA-approved small molecules and biologics that are commonly used to treat other human diseases. A investigation into 18 small molecules and 3 biologics was conducted in cell culture and the impact of treatment on viral titer was quantified by plaque assay. The investigation identified 4 FDA-approved small molecules, Maraviroc, FTY720 (Fingolimod), Atorvastatin and Nitazoxanide that were able to inhibit SARS-CoV-2 infection. Confocal microscopy with over expressed S-protein demonstrated that Maraviroc reduced the extent of S-protein mediated cell fusion as observed by fewer multinucleate cells in the context of drug-treatment. Mathematical modeling of drug-dependent viral multiplication dynamics revealed that prolonged drug treatment will exert an exponential decrease in viral load in a multicellular/tissue environment. Taken together, the data demonstrate that Maraviroc, Fingolimod, Atorvastatin and Nitazoxanide inhibit SARS-CoV-2 in cell culture.

3.
Viruses ; 14(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560802

RESUMO

The blood brain barrier (BBB) is a multicellular microenvironment that plays an important role in regulating bidirectional transport to and from the central nervous system (CNS). Infections by many acutely infectious viruses such as alphaviruses and flaviviruses are known to impact the integrity of the endothelial lining of the BBB. Infection by Venezuelan Equine Encephalitis Virus (VEEV) through the aerosol route causes significant damage to the integrity of the BBB, which contributes to long-term neurological sequelae. An effective therapeutic intervention strategy should ideally not only control viral load in the host, but also prevent and/or reverse deleterious events at the BBB. Two dimensional monocultures, including trans-well models that use endothelial cells, do not recapitulate the intricate multicellular environment of the BBB. Complex in vitro organ-on-a-chip models (OOC) provide a great opportunity to introduce human-like experimental models to understand the mechanistic underpinnings of the disease state and evaluate the effectiveness of therapeutic candidates in a highly relevant manner. Here we demonstrate the utility of a neurovascular unit (NVU) in analyzing the dynamics of infection and proinflammatory response following VEEV infection and therapeutic effectiveness of omaveloxolone to preserve BBB integrity and decrease viral and inflammatory load.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Humanos , Animais , Cavalos , Vírus da Encefalite Equina Venezuelana/fisiologia , Barreira Hematoencefálica , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/prevenção & controle , Células Endoteliais , Sistemas Microfisiológicos
4.
Viruses ; 13(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572467

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than two million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin-a de novo designed synthetic small molecule that captures the biological properties of HDPs-on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is likely to be a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 against different strains of the virus in cell culture.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Guanidinas/farmacologia , Pirimidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , COVID-19/virologia , Técnicas de Cultura de Células , Linhagem Celular , Chlorocebus aethiops , Defensinas/farmacologia , Humanos , Peptidomiméticos/farmacologia , SARS-CoV-2/fisiologia , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Sci Rep ; 11(1): 9825, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972631

RESUMO

In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.


Assuntos
COVID-19/imunologia , COVID-19/terapia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Cavalos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização/métodos , Imunização Passiva/métodos , Imunoglobulina G/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
6.
Viruses ; 12(9)2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933112

RESUMO

Venezuelan equine encephalitis virus (VEEV), a mosquito transmitted alphavirus of the Togaviridae family, can cause a highly inflammatory and encephalitic disease upon infection. Although a category B select agent, no FDA-approved vaccines or therapeutics against VEEV currently exist. We previously demonstrated NF-κB activation and macromolecular reorganization of the IKK complex upon VEEV infection in vitro, with IKKß inhibition reducing viral replication. Mass spectrometry and confocal microscopy revealed an interaction between IKKß and VEEV non-structural protein 3 (nsP3). Here, using western blotting, a cell-free kinase activity assay, and mass spectrometry, we demonstrate that IKKß kinase activity can directly phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5. Alanine substitution mutations at sites 204/5, 142, or 134/5 reduced VEEV replication by >30-100,000-fold corresponding to a severe decrease in negative-strand synthesis. Serial passaging rescued viral replication and negative-strand synthesis, and sequencing of revertant viruses revealed reversion to the wild-type TC-83 phosphorylation capable amino acid sequences at nsP3 sites 204/5, 142, and 135. Generation of phosphomimetic mutants using aspartic acid substitutions at site 204/5 resulted in rescue of both viral replication and negative-strand RNA production, whereas phosphomimetic mutant 134/5 rescued viral replication but failed to restore negative-strand RNA levels, and phosphomimetic mutant 142 did not rescue VEEV replication. Together, these data demonstrate that IKKß can phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5, and suggest that phosphorylation is essential for negative-strand RNA synthesis at site 204/5, but may be important for infectious particle production at site 134/5.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/metabolismo , Quinase I-kappa B/metabolismo , Proteínas não Estruturais Virais/metabolismo , Aedes , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana , Humanos , Mutação , NF-kappa B/metabolismo , Fosforilação , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
7.
Sci Rep ; 10(1): 21491, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293592

RESUMO

Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause permanent neurological sequelae in a small number of cases. VEEV is classified as a category B select agent due to ease of aerosolization and high retention of infectivity in the aerosol form. Currently, there are no FDA-approved vaccines or therapeutics available to combat VEEV infection. VEEV infection in vivo is characterized by extensive systemic inflammation that can exacerbate infection by potentially increasing the susceptibility of off-site cells to infection and dissemination of the virus. Hence, a therapeutic targeting both the infection and associated inflammation represents an unmet need. We have previously demonstrated that host defense peptides (HDPs), short peptides that are key components of the innate immune response, exhibit antiviral activity against a multitude of viruses including VEEV. In this study, we designed synthetic peptides derived from indolicidin, a naturally occurring HDP, and tested their efficacy against VEEV. Two candidate synthetic peptides inhibited VEEV replication by approximately 1000-fold and decreased the expression of inflammatory mediators such as IL1α, IL1ß, IFNγ, and TNFα at both the gene and protein expression levels. Furthermore, an increase in expression levels of genes involved in chemotaxis of leukocytes and anti-inflammatory genes such as IL1RN was also observed. Overall, we conclude that our synthetic peptides inhibit VEEV replication and the inflammatory burden associated with VEEV infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Vírus da Encefalite Equina Venezuelana/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/genética , Cavalos , Humanos , Inflamação , Camundongos , Células Vero
8.
Viruses ; 11(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842327

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a category B select agent pathogen that can be aerosolized. Infections in murine models and humans can advance to an encephalitic phenotype which may result in long-term neurological complications or death. No specific FDA-approved treatments or vaccines are available for the treatment or prevention of VEEV infection. Neurotropic viral infections have two damaging components: neuronal death caused by viral replication, and damage from the subsequent inflammatory response. Reducing the level of inflammation may lessen neurological tissue damage that often arises following VEEV infection. In this study, three commercially available anti-inflammatory drugs, Celecoxib, Rolipram, and Tofacitinib, were evaluated for antiviral activity in an astrocyte and a microglial model of VEEV infection. The inhibitors were tested against the vaccine strain VEEV TC-83, as well as the wild-type VEEV Trinidad donkey strain. Celecoxib, Tofacitinib, and Rolipram significantly decreased viral titers both after pre-treatment and post-treatment of infected cells. VEEV Trinidad Donkey (TrD) titers were reduced 6.45-fold in cells treated with 50 µM of Celecoxib, 2.45-fold when treated with 50 µM of Tofacitinib, and 1.81-fold when treated with 50 µM of Rolipram. Celecoxib was also shown to decrease inflammatory gene expression in the context of TC-83 infection. Overall, Celecoxib demonstrated potency as a countermeasure strategy that slowed VEEV infection and infection-induced inflammation in an in vitro model.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Reposicionamento de Medicamentos , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/virologia , Replicação Viral/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Aprovação de Drogas , Humanos , Microglia/efeitos dos fármacos , Estados Unidos , United States Food and Drug Administration
9.
Antiviral Res ; 164: 61-69, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30738837

RESUMO

Venezuelan equine encephalitis virus (VEEV), a new world alphavirus belonging to the Togaviridae family, causes periodic disease outbreaks in humans and equines with high associated mortality and morbidity. VEEV is highly infectious via the aerosol route and so has been developed as a biological weapon (Hawley and Eitzen, 2001). Despite its current classification as a category B select agent, there are no FDA approved vaccines or therapeutics to counter VEEV infections. Here we utilize a naturally occurring host defense peptide, LL-37, as a therapeutic strategy to inhibit VEEV multiplication in infected cells. LL-37 has previously demonstrated activity against several viruses by directly interacting with viral particles and indirectly by establishing an antiviral state in the host cell. We show that LL-37 exhibited potent antiviral activity against VEEV by inhibiting viral replication. Genomic RNA copies of the TC-83 strain of VEEV and viral titers were significantly reduced compared to non-treated controls. LL-37 also inhibited the virulent Trinidad Donkey (TrD) strain of VEEV. Entry assays revealed a robust reduction of viral RNA copies at the early stages of TC-83 infection. Pre-incubation of cells with LL-37 and TC-83 resulted in a strong inhibitory response, indicating that LL-37 impacts early stages of the infectious process. Confocal and electron microscopy images confirmed the aggregation of viral particles, which potentially accounts for entry prevention and hence reduced viral infection. LL-37 treatment also modulated type I interferon (IFN) expression in infected cells. LL-37 treatment dramatically increased IFNß1 expression in treated cells in a time-dependent manner. Our results establish LL-37 as a relevant and novel potential therapeutic strategy for the treatment of VEEV infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Vírus da Encefalite Equina Venezuelana/fisiologia , Humanos , Carga Viral , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA