Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 218: 116924, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445878

RESUMO

Efficient neuronal communication between brain regions through oscillatory synchronization at certain frequencies is necessary for cognition. Such synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to support ongoing cognitive operations. However, few studies characterizing dynamic electrophysiological brain networks have simultaneously accounted for temporal non-stationarity, spectral structure, and spatial properties. Here, we propose an analysis framework for characterizing the large-scale phase-coupling network dynamics during task performance using magnetoencephalography (MEG). We exploit the high spatiotemporal resolution of MEG to measure time-frequency dynamics of connectivity between parcellated brain regions, yielding data in tensor format. We then use a tensor component analysis (TCA)-based procedure to identify the spatio-temporal-spectral modes of covariation among separate regions in the human brain. We validate our pipeline using MEG data recorded during a hand movement task, extracting a transient motor network with beta-dominant spectral mode, which is significantly modulated by the movement task. Next, we apply the proposed pipeline to explore brain networks that support cognitive operations during a working memory task. The derived results demonstrate the temporal formation and dissolution of multiple phase-coupled networks with specific spectral modes, which are associated with face recognition, vision, and movement. The proposed pipeline can characterize the spectro-temporal dynamics of functional connectivity in the brain on the subsecond timescale, commensurate with that of cognitive performance.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Reconhecimento Facial/fisiologia , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
2.
Brain Topogr ; 33(6): 677-692, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929555

RESUMO

Sustained attention encompasses a cascade of fundamental functions. The human ability to implement a sustained attention task is supported by brain networks that dynamically formed and dissolved through oscillatory synchronization. The decrement of vigilance induced by prolonged task engagement affects sustained attention. However, little is known about which stage or combinations are affected by vigilance decrement. Here, we applied an analysis framework composed of weighted phase lag index (wPLI) and tensor component analysis (TCA) to an EEG dataset collected during 80 min sustained attention task to examine the electrophysiological basis of such effect. We aimed to characterize the phase-coupling networks to untangle different phases involved in sustained attention and study how they are modulated by vigilance decrement. We computed the time-frequency domain wPLI from each block and subject and constructed a fourth-order tensor, containing the time, frequency, functional connectivity (FC), and blocks × subjects. This tensor was subjected to the TCA to identify the interacted and low-dimensional components representing the frequency-specific dynamic FC (fdFC). We extracted four types of neuromakers during a sustained attention task, namely the pre-stimulus alpha right-lateralized parieto-occipital FC, the post-stimulus theta fronto-parieto-occipital FC, delta fronto-parieto-occipital FC, and beta right/left sensorimotor FCs. All these fdFCs were impaired by vigilance decrement. These fdFCs, except for the beta left sensorimotor network, were restored by rewards, although the restoration by reward in the beta right sensorimotor network was transient. These findings provide implications for dissociable effects of vigilance decrement on sustained attention by utilizing the tensor-based framework.


Assuntos
Atenção , Encéfalo , Fenômenos Eletrofisiológicos , Humanos , Recompensa , Vigília
3.
Brain Topogr ; 33(3): 289-302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32124110

RESUMO

Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during freely listening to music. We used a data-driven method that combined music information retrieval with spatial Fourier Independent Components Analysis (spatial Fourier-ICA) to probe the interplay between the spatial profiles and the spectral patterns of the brain network emerging from music listening. Correlation analysis was performed between time courses of brain networks extracted from EEG data and musical feature time series extracted from music stimuli to derive the musical feature related oscillatory patterns in the listening brain. We found brain networks of musical feature processing were frequency-dependent. Musical feature time series, especially fluctuation centroid and key feature, were associated with an increased beta activation in the bilateral superior temporal gyrus. An increased alpha oscillation in the bilateral occipital cortex emerged during music listening, which was consistent with alpha functional suppression hypothesis in task-irrelevant regions. We also observed an increased delta-beta oscillatory activity in the prefrontal cortex associated with musical feature processing. In addition to these findings, the proposed method seems valuable for characterizing the large-scale frequency-dependent brain activity engaged in musical feature processing.


Assuntos
Percepção Auditiva , Mapeamento Encefálico , Música , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Humanos
4.
Brain Topogr ; 33(1): 37-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879854

RESUMO

The waveform in the time domain, spectrum in the frequency domain, and topography in the space domain of component(s) of interest are the fundamental indices in neuroscience research. Despite the application of time-frequency analysis (TFA) to extract the temporal and spectral characteristics of non-phase-locked component (NPLC) of interest simultaneously, the statistical results are not always expectedly satisfying, in that the spatial information is not considered. Complex Morlet wavelet transform is widely applied to TFA of event-related-potential (ERP) data, and mother wavelet (which should be firstly defined by center frequency and bandwidth (CFBW) before using the method to TFA of ERP data) influences the time-frequency results. In this study, an optimal set of CFBW was firstly selected from the number sets of CFBW, to further analyze for TFA of the ERP data in a cognitive experiment paradigm of emotion (Anger and Neutral) and task (Go and Nogo). Then tensor decomposition algorithm was introduced to investigate the NPLC of interest from the fourth-order tensor. Compared with the TFA results which only revealed a significant difference between Go and Nogo task condition, the tensor-based analysis showed significant interaction effect between emotion and task. Moreover, significant differences were found in both emotion and task conditions through tensor decomposition. In addition, the statistical results of TFA would be affected by the selected region of interest (ROI), whereas those of the proposed method were not subject to ROI. Hence, this study demonstrated that tensor decomposition method was effective in extracting NPLC, by considering spatial information simultaneously as the potential to explore the brain mechanisms related to experimental design.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Encéfalo , Emoções , Potenciais Evocados , Humanos , Masculino , Adulto Jovem
5.
Sensors (Basel) ; 20(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512946

RESUMO

In recent times, Received Signal Strength (RSS)-based Wi-Fi fingerprinting localization has become one of the most promising techniques for indoor localization. The primary aim of RSS is to check the quality of the signal to determine the coverage and the quality of service. Therefore, fine-resolution RSS is needed, which is generally expressed by 1-dBm granularity. However, we found that, for fingerprinting localization, fine-granular RSS is unnecessary. A coarse-granular RSS can yield the same positioning accuracy. In this paper, we propose quantization for only the effective portion of the signal strength for fingerprinting localization. We found that, if a quantized RSS fingerprint can carry the major characteristics of a radio environment, it is sufficient for localization. Five publicly open fingerprinting databases with four different quantization strategies were used to evaluate the study. The proposed method can help to simplify the hardware configuration, enhance security, and save approximately 40-60% storage space and data traffic.

6.
Entropy (Basel) ; 20(5)2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33265402

RESUMO

Dynamic representation of functional brain networks involved in the sequence analysis of functional connectivity graphs of the brain (FCGB) gains advances in uncovering evolved interaction mechanisms. However, most of the networks, even the event-related ones, are highly heterogeneous due to spurious interactions, which bring challenges to revealing the change patterns of interactive information in the complex dynamic process. In this paper, we propose a network entropy (NE) method to measure connectivity uncertainty of FCGB sequences to alleviate the spurious interaction problem in dynamic network analysis to realize associations with different events during a complex cognitive task. The proposed dynamic analysis approach calculated the adjacency matrices from ongoing electroencephalpgram (EEG) in a sliding time-window to form the FCGB sequences. The probability distribution of Shannon entropy was replaced by the connection sequence distribution to measure the uncertainty of FCGB constituting NE. Without averaging, we used time frequency transform of the NE of FCGB sequences to analyze the event-related changes in oscillatory activity in the single-trial traces during the complex cognitive process of driving. Finally, the results of a verification experiment showed that the NE of the FCGB sequences has a certain time-locked performance for different events related to driver fatigue in a prolonged driving task. The time errors between the extracted time of high-power NE and the recorded time of event occurrence were distributed within the range [-30 s, 30 s] and 90.1% of the time errors were distributed within the range [-10 s, 10 s]. The high correlation (r = 0.99997, p < 0.001) between the timing characteristics of the two types of signals indicates that the NE can reflect the actual dynamic interaction states of brain. Thus, the method may have potential implications for cognitive studies and for the detection of physiological states.

7.
Neuroimage ; 124(Pt A): 224-231, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26364862

RESUMO

Low-level (timbral) and high-level (tonal and rhythmical) musical features during continuous listening to music, studied by functional magnetic resonance imaging (fMRI), have been shown to elicit large-scale responses in cognitive, motor, and limbic brain networks. Using a similar methodological approach and a similar group of participants, we aimed to study the replicability of previous findings. Participants' fMRI responses during continuous listening of a tango Nuevo piece were correlated voxelwise against the time series of a set of perceptually validated musical features computationally extracted from the music. The replicability of previous results and the present study was assessed by two approaches: (a) correlating the respective activation maps, and (b) computing the overlap of active voxels between datasets at variable levels of ranked significance. Activity elicited by timbral features was better replicable than activity elicited by tonal and rhythmical ones. These results indicate more reliable processing mechanisms for low-level musical features as compared to more high-level features. The processing of such high-level features is probably more sensitive to the state and traits of the listeners, as well as of their background in music.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Música , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
8.
Neuroimage ; 83: 627-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23810975

RESUMO

We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised continuous fMRI responses of musically trained participants to an Argentinean tango. Individual models for the two musical medleys revealed that activations in several areas in the brain belonging to the auditory, limbic, and motor regions could be predicted. Notably, activations in the medial orbitofrontal region and the anterior cingulate cortex, relevant for self-referential appraisal and aesthetic judgments, could be predicted successfully. Cross-validation across musical stimuli and participant pools helped identify a region of the right superior temporal gyrus, encompassing the planum polare and the Heschl's gyrus, as the core structure that processed complex acoustic features of musical pieces from various genres, with or without lyrics. Models based on purely instrumental music were able to predict activation in the bilateral auditory cortices, parietal, somatosensory, and left hemispheric primary and supplementary motor areas. The presence of lyrics on the other hand weakened the prediction of activations in the left superior temporal gyrus. Our results suggest spontaneous emotion-related processing during naturalistic listening to music and provide supportive evidence for the hemispheric specialization for categorical sounds with realistic stimuli. We herewith introduce a powerful means to predict brain responses to music, speech, or soundscapes across a large variety of contexts.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico , Encéfalo/fisiologia , Lateralidade Funcional/fisiologia , Música , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Análise de Componente Principal , Adulto Jovem
9.
J Neurosci Methods ; 348: 108971, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160019

RESUMO

BACKGROUND: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings. METHOD: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a "squeeze and excitation" block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages. RESULT: Model performance is evaluated on three public datasets. For all tasks with different available channels, our model achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of multiple polysomnographic signals. COMPARISON: Compared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or better performance, and exhibits low computational cost. CONCLUSIONS: The model demonstrates its transferability among different datasets, without changing model architecture or hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Humanos , Polissonografia , Sono , Fases do Sono
10.
Int J Neural Syst ; 31(3): 2150001, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33353528

RESUMO

To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis between individual time courses of Fourier-ICA components and musical features. We found that (1) three components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, were involved in music processing among most healthy subjects; and that (2) one alpha lateral component located in the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed the statistical group comparison, and we found that: (1) the alpha lateral component was activated more strongly in healthy subjects than in the MDD individuals, and that (2) the derived frequency-dependent networks of musical feature processing seemed to be altered in MDD participants compared to healthy subjects. The proposed pipeline appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms.


Assuntos
Transtorno Depressivo Maior , Música , Percepção Auditiva , Encéfalo , Mapeamento Encefálico , Depressão , Eletroencefalografia , Humanos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2396-2399, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018489

RESUMO

Various computational human phantoms have been proposed in the past decades, but few of them include delicate anthropometric variations. In this study, we build a whole-body phantom library including 145 anthropometric parameters. This library is constructed by registration-based pipeline, which transfers a standard whole-body anatomy template to an anthropometry-adjustable body shape library (MakeHuman™). Therefore, internal anatomical structures are created for body shapes of different anthropometric parameters. Based on the constructed library, we can generate individualized whole-body phantoms according to given arbitrary anthropometric parameters. Moreover, the proposed phantom library can also be converted to voxel-based and tetrahedron-based model for further personalized simulation. We hope this phantom library will serve as a computational tool in research community.


Assuntos
Antropometria , Imagens de Fantasmas , Humanos
12.
Int J Neural Syst ; 30(3): 2050007, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32116090

RESUMO

Recent continuous task studies, such as narrative speech comprehension, show that fluctuations in brain functional connectivity (FC) are altered and enhanced compared to the resting state. Here, we characterized the fluctuations in FC during comprehension of speech and time-reversed speech conditions. The correlations of Hilbert envelope of source-level EEG data were used to quantify FC between spatially separate brain regions. A symmetric multivariate leakage correction was applied to address the signal leakage issue before calculating FC. The dynamic FC was estimated based on a sliding time window. Then, principal component analysis (PCA) was performed on individually concatenated and temporally concatenated FC matrices to identify FC patterns. We observed that the mode of FC induced by speech comprehension can be characterized with a single principal component. The condition-specific FC demonstrated decreased correlations between frontal and parietal brain regions and increased correlations between frontal and temporal brain regions. The fluctuations of the condition-specific FC characterized by a shorter time demonstrated that dynamic FC also exhibited condition specificity over time. The FC is dynamically reorganized and FC dynamic pattern varies along a single mode of variation during speech comprehension. The proposed analysis framework seems valuable for studying the reorganization of brain networks during continuous task experiments.


Assuntos
Córtex Cerebral/fisiologia , Compreensão/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Rede Nervosa/fisiologia , Processamento de Sinais Assistido por Computador , Percepção da Fala/fisiologia , Humanos , Plasticidade Neuronal/fisiologia , Análise de Componente Principal
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1368-1371, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018243

RESUMO

Accurate registration of lung computed tomography (CT) image is a significant task in thorax image analysis. Recently deep learning-based medical image registration methods develop fast and achieve promising performance on accuracy and speed. However, most of them learned the deformation field through intensity similarity but ignored the importance of aligning anatomical landmarks (e.g., the branch points of airway and vessels). Accurate alignment of anatomical landmarks is essential for obtaining anatomically correct registration. In this work, we propose landmark constrained learning with a convolutional neural network (CNN) for lung CT registration. Experimental results of 40 lung 3D CT images show that our method achieves 0.93 in terms of Dice index and 3.54 mm of landmark Euclidean distance on lung CT registration task, which outperforms state-of-the-art methods in registration accuracy.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Tórax
14.
IEEE Trans Neural Syst Rehabil Eng ; 28(2): 409-418, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869796

RESUMO

Recent studies show that the dynamics of electrophysiological functional connectivity is attracting more and more interest since it is considered as a better representation of functional brain networks than static network analysis. It is believed that the dynamic electrophysiological brain networks with specific frequency modes, transiently form and dissolve to support ongoing cognitive function during continuous task performance. Here, we propose a novel method based on tensor component analysis (TCA), to characterize the spatial, temporal, and spectral signatures of dynamic electrophysiological brain networks in electroencephalography (EEG) data recorded during free music-listening. A three-way tensor containing time-frequency phase-coupling between pairs of parcellated brain regions is constructed. Nonnegative CANDECOMP/PARAFAC (CP) decomposition is then applied to extract three interconnected, low-dimensional descriptions of data including temporal, spectral, and spatial connection factors. Musical features are also extracted from stimuli using acoustic feature extraction. Correlation analysis is then conducted between temporal courses of musical features and TCA components to examine the modulation of brain patterns. We derive several brain networks with distinct spectral modes (described by TCA components) significantly modulated by musical features, including higher-order cognitive, sensorimotor, and auditory networks. The results demonstrate that brain networks during music listening in EEG are well characterized by TCA components, with spatial patterns of oscillatory phase-synchronization in specific spectral modes. The proposed method provides evidence for the time-frequency dynamics of brain networks during free music listening through TCA, which allows us to better understand the reorganization of electrophysiological networks.


Assuntos
Fenômenos Eletrofisiológicos , Música/psicologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Algoritmos , Vias Auditivas/fisiologia , Percepção Auditiva , Encéfalo/fisiologia , Eletroencefalografia , Sincronização de Fases em Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Adulto Jovem
15.
J Neurosci Methods ; 330: 108502, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730873

RESUMO

BACKGROUND: Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. NEW METHOD: Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneously decomposing EEG tensors into common and individual components. RESULTS: With the proposed framework, the brain activities can be effectively extracted and sorted into the clusters of interest. The proposed algorithm based on the generalized model achieved higher fittings and stronger robustness. In addition to the distribution of centro-parietal and occipito-parietal regions with theta and alpha oscillations, the music-elicited brain activities were also located in the frontal region and distributed in the 4∼11 Hz band. COMPARISON WITH EXISTING METHOD(S): The present study, by providing a solution of how to separate common stimulus-elicited brain activities using coupled tensor decomposition, has shed new light on the processing and analysis of ongoing EEG data in multi-subject level. It can also reveal more links between brain responses and the continuous musical stimulus. CONCLUSIONS: The proposed framework based on coupled tensor decomposition can be successfully applied to group analysis of ongoing EEG data, as it can be reliably inferred that those brain activities we obtained are associated with musical stimulus.


Assuntos
Algoritmos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Processamento de Sinais Assistido por Computador , Adulto , Percepção Auditiva/fisiologia , Humanos , Pessoa de Meia-Idade , Música , Adulto Jovem
16.
Clin Neurophysiol ; 131(10): 2413-2422, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828045

RESUMO

OBJECTIVE: The functional connectivity (FC) of major depression disorder (MDD) has not been well studied under naturalistic and continuous stimuli conditions. In this study, we investigated the frequency-specific FC of MDD patients exposed to conditions of music perception using ongoing electroencephalogram (EEG). METHODS: First, we applied the phase lag index (PLI) method to calculate the connectivity matrices and graph theory-based methods to measure the topology of brain networks across different frequency bands. Then, classification methods were adopted to identify the most discriminate frequency band for the diagnosis of MDD. RESULTS: During music perception, MDD patients exhibited a decreased connectivity pattern in the delta band but an increased connectivity pattern in the beta band. Healthy people showed a left hemisphere-dominant phenomenon, but MDD patients did not show such a lateralized effect. Support vector machine (SVM) achieved the best classification performance in the beta frequency band with an accuracy of 89.7%, sensitivity of 89.4% and specificity of 89.9%. CONCLUSIONS: MDD patients exhibited an altered FC in delta and beta bands, and the beta band showed a superiority in the diagnosis of MDD. SIGNIFICANCE: Our study provided a promising reference for the diagnosis of MDD, and revealed a new perspective for understanding the topology of MDD brain networks during music perception.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Música , Adulto , Idoso , Eletroencefalografia , Humanos , Pessoa de Meia-Idade , Adulto Jovem
17.
Comput Methods Programs Biomed ; 184: 105120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31627147

RESUMO

BACKGROUND AND OBJECTIVE: It is challenging to conduct real-time identification of myocardial infarction (MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the present study, we proposed an automated single-beat MI detection and localization system using dual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm. METHODS: After denoising and segmentation of ECG, a fourth-order wavelet tensor (leadsâ€¯× subbands × samples × beats) was constructed based on the discrete wavelet packet transform (DWPT), to represent the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To reduce the tensor dimension and preserve the intrinsic information, the multilinear principal component analysis (MPCA) was employed. Afterward, 84 discriminate features were fed into a classifier of bootstrap-aggregated decision trees (Treebagger). A total of 78 healthy and 328 MI (6 types) records including 57557 beats were chosen from PTB diagnostic ECG database for evaluation. RESULTS: The validation results demonstrated that our proposed MI detection and localization system embedded with Dual-Q TQWT and wavelet packet tensor decomposition outperformed commonly used discrete wavelet transform (DWT), empirical mode decomposition (EMD) denoising methods and vector-based PCA method. With the Treebagger classifier, we obtained an accuracy of 99.98% in beat level and an accuracy of 97.46% in record level training/testing for MI detection. We also achieved an accuracy of 99.87% in beat level and an accuracy of 90.39% in record level for MI localization. CONCLUSION: Altogether, the automated system brings potential improvement in automated detection and localization of MI in clinical practice.


Assuntos
Eletrocardiografia/métodos , Infarto do Miocárdio/diagnóstico , Análise de Ondaletas , Algoritmos , Automação , Estudos de Casos e Controles , Humanos , Infarto do Miocárdio/fisiopatologia , Análise de Componente Principal , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
18.
Epileptic Disord ; 22(4): 489-493, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763868

RESUMO

Temperature-related reflex epilepsy most often takes the form of hot water epilepsy, but very rarely, reflex epilepsy is related to cold temperature. We report a 70-year-old male who had seizures triggered by cold sensations in the body. Four antiepileptic drugs were taken during the drug treatment, and oxcarbazepine was the most effective at stopping the seizures. We implemented clinical seizure induction and obtained EEG data from an interictal period and two complete ictal periods. Source estimation was performed to identify and map the primary sources involved in the seizures on the cortical level. We found that ß rhythm appeared on the prefrontal lobes during the whole ictal period. The low-frequency slow δ and θ rhythms, especially the δ rhythm, appeared in the occipital lobe in the early ictal stage and propagated to the right temporal lobe in the mid-late ictal stage. The prefrontal lobe and right temporal lobe were mainly involved in the generation and propagation of the epileptic activities. This study provides a valuable reference for clinical drug therapy and provides insights into the characteristics of the brain activities involved in cold-induced reflex epilepsy. [Published with video sequences].


Assuntos
Ritmo beta/fisiologia , Temperatura Baixa , Epilepsia Reflexa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Lobo Temporal/fisiopatologia , Idoso , Epilepsia Reflexa/diagnóstico , Humanos , Masculino
19.
Front Neurosci ; 14: 521595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192239

RESUMO

Clustering is a promising tool for grouping the sequence of similar time-points aimed to identify the attention blocks in spatiotemporal event-related potentials (ERPs) analysis. It is most likely to elicit the appropriate time window for ERP of interest if a suitable clustering method is applied to spatiotemporal ERP. However, how to reliably estimate a proper time window from entire individual subjects' data is still challenging. In this study, we developed a novel multiset consensus clustering method in which several clustering results of multiple subjects were combined to retrieve the best fitted clustering for all the subjects within a group. Then, the obtained clustering was processed by a newly proposed time-window detection method to determine the most suitable time window for identifying the ERP of interest in each condition/group. Applying the proposed method to the simulated ERP data and real data indicated that the brain responses from the individual subjects can be collected to determine a reliable time window for different conditions/groups. Our results revealed more precise time windows to identify N2 and P3 components in the simulated data compared to the state-of-the-art methods. Additionally, our proposed method achieved more robust performance and outperformed statistical analysis results in the real data for N300 and prospective positivity components. To conclude, the proposed method successfully estimates the time window for ERP of interest by processing the individual data, offering new venues for spatiotemporal ERP processing.

20.
Front Hum Neurosci ; 14: 207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670036

RESUMO

The influence of motivation on selective visual attention in states of high vs. low vigilance is poorly understood. To explore the possible differences in the influence of motivation on behavioral performance and neural activity in high and low vigilance levels, we conducted a prolonged 2 h 20 min flanker task and provided monetary rewards during the 20- to 40- and 100- to 120-min intervals of task performance. Both the behavioral and electrophysiological measures were modulated by prolonged task engagement. Moreover, the effect of reward was different in high vs. low vigilance states. The monetary reward increased accuracy and decreased the reaction time (RT) and number of omitted responses in the low but not in the high vigilance state. The fatigue-related decrease in P300 amplitude recovered to its level in the high vigilance state by manipulating motivation, whereas the fatigue-related increase in P300 latency was not modulated by reward. Additionally, the fatigue-related increase in event-related spectral power at 1-4 Hz was sensitive to vigilance decrement and reward. However, the spectral power at 4-8 Hz was only affected by the decrease in vigilance. These electrophysiological measures were not influenced by motivation in the state of high vigilance. Our results suggest that neural processing capacity, but not the timing of processing, is sensitive to motivation. These findings also imply that the fatigue-related impairments in behavioral performance and neural activity underlying selective visual attention only partly recover after manipulating motivation. Furthermore, our results provide evidence for the dissociable neural mechanisms underlying the fatigue-related decrease vs. reward-related increase in attentional resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA