Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3595-3608, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38355395

RESUMO

Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.


Assuntos
Vírus , Aerossóis
2.
Environ Sci Technol ; 57(51): 21558-21569, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38084588

RESUMO

The factors governing the viability of airborne viruses embedded within respiratory particles are not well understood. This study aimed to investigate the relative humidity (RH)-dependent viability of airborne respiratory syncytial virus (RSV) in simulated respiratory particles suspended in various indoor air conditions. We tested airborne RSV viability in three static indoor air conditions, including sub-hysteresis (RH < 39%), hysteresis (39% < RH < 65%), and super-hysteresis (RH > 65%) air as well as in three dynamic indoor air conditions, including the transitions between the static conditions. The dynamic conditions were hysteresis → super-hysteresis → hysteresis, sub-hysteresis → hysteresis, and super-hysteresis → hysteresis. We found that after 45 min of particle aging in static conditions, the viability of RSV in sub-hysteresis, hysteresis, and super-hysteresis air was 0.72% ± 0.06%, 0.03% ± 0.006%, and 0.27% ± 0.008%, respectively. After 45 min of aging in dynamic conditions, the RSV viability decreased for particles that remained in a liquid (deliquesced) state during aging when compared with particles in a solid (effloresced) state. The decreased viability of airborne RSV for deliquesced particles is consistent with prolonged exposure to elevated aqueous solutes. These results represent the first measurements of the survival of airborne RSV over particle aging time, with equal viability in low, intermediate, and high RHs at 5 and 15 min and a V-shaped curve after 45 min.


Assuntos
Poluição do Ar em Ambientes Fechados , Vírus Sinciciais Respiratórios , Poluição do Ar em Ambientes Fechados/análise , Umidade , Monitoramento Ambiental/métodos
3.
Environ Sci Technol ; 57(49): 20559-20570, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019974

RESUMO

Marine cloud brightening (MCB) is a potential intervention to mitigate the effects of climate change by increasing the reflectance of low-level maritime clouds, including those over the Great Barrier Reef. The technique involves dispersing a plume of submicrometer seawater droplets over the ocean, which evaporate, generating nanosized sea-salt aerosols (SSAs) that disperse through the atmosphere with some fraction incorporated into clouds. Droplet evaporation, which occurs in the immediate vicinity (meters to tens of meters) of the source, has been theorized to produce a negatively buoyant plume hindering the mixing of the sea-salt aerosol to cloud height and compromising the effectiveness of MCB. We characterized in situ for the first time the nearfield aerosol dispersion from a point source of atomized seawater produced using the effervescent technique. We observed consistent vertical mixing of the plume up to 150 ± 5 m height at 1 km downwind. The extent of vertical dispersion was influenced by wind velocity and atmospheric stability. We found no evidence that negative buoyancy due to the evaporation of the 0.068 kg/s water fraction significantly suppressed vertical mixing. Our results can be attributed to the small droplet sizes generated by the effervescent spray technology and associated low flow rates required to generate around 1014 droplets s-1. We estimate that, for a hypothetical implementation producing up to 1016 s-1 similarly sized SSAs, evaporative cooling is unlikely to significantly suppress the vertical dispersion of aerosol for MCB.


Assuntos
Atmosfera , Água do Mar , Água , Vento , Aerossóis/análise
4.
Environ Sci Technol ; 56(15): 10879-10890, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852155

RESUMO

The impact of respiratory particle composition on the equilibrium morphology and phase is not well understood. Furthermore, the effects of these different phases and morphologies on the viability of viruses embedded within these particles are equally unknown. Physiologically relevant respiratory fluid analogues were constructed, and their hygroscopic behavior was measured using an ensemble technique. A relationship between hygroscopicity and protein concentration was determined, providing additional validation to the high protein content of respiratory aerosol measured in prior works (>90%). It was found that the salt component of the respiratory particles could crystallize as a single crystal, multiple crystals, or would not crystallize at all. It was found that dried protein particles at indoor-relevant climatic conditions could exist separately in a glassy (∼77% of particles) or viscoelastic state (∼23% of particles). The phase state and morphology of respiratory particles may influence the viability of embedded pathogens. We recommend that pathogen research aiming to mimic the native composition of respiratory fluid should use a protein concentration of at least 90% by solute volume to improve the representativity of the pathogen's microenvironment.


Assuntos
Sistema Respiratório , Cloreto de Sódio , Aerossóis/química , Tamanho da Partícula , Cloreto de Sódio/química , Molhabilidade
5.
Environ Sci Technol ; 54(8): 4995-5002, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32186183

RESUMO

The concentration, nature, and persistence of particulate matter (PM)-bound reactive oxygen species (ROS) are of significant interest in understanding how atmospheric pollution affects health. However, the inherent difficulties in their measurement, particularly regarding the so-called "short-lived" ROS, have limited our understanding of their persistence and concentrations in the atmosphere. This paper aims to address this limitation through the analysis of PM-bound ROS measurements from the Particle Into Nitroxide Quencher (PINQ) system at an atmospheric monitoring site in the city of Heshan, Guangdong Province, China. The measured daily average and standard deviation for the measurement period was 0.050 ± 0.017 nmol·m-3. The averaged measured concentration of ROS per mass of PM and standard deviation was 0.0012 ± nmol·mg. The dataset was also correlated with standard pollutants, and a simplified model was constructed to separate the contributions of short-lived (t1/2 = 5 min) and long-lived (t1/2 ∼ infinity) ROS to total concentration using ozone, carbon monoxide, and PM mass. This showed that the short-lived ROS contribute an average of 33% of the daily PM-bound ROS burden over the measurement period, up to 52% of daily average on elevated days, and up to 71% for hourly averages. These results highlight the need for accurate measurements of short-lived ROS and provide the starting point for a general model to predict PM-bound ROS concentrations using widely available standard pollutants for future epidemiological research.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Ambientais , China , Monitoramento Ambiental , Material Particulado/análise , Espécies Reativas de Oxigênio/análise
6.
Environ Sci Technol ; 54(14): 8868-8877, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32515977

RESUMO

The International Agency of Research on Cancer identifies high-temperature frying, which features prominently in Chinese cooking, as producing group 2A carcinogens. This study simultaneously characterized particulate and gaseous-phase cooking emissions, monitored their reactive oxygen species (ROS) concentrations, and evaluated their impact on genetic damage and expression in exposed human bronchial epithelial cells. Five types of edible oil, three kinds of seasonings, and two dishes were assessed. Among tested edible oils, heating of soybean oil released the largest particle number concentration (2.09 × 1013 particles/(g cooking material and oil)·h) and volatile organic compounds (VOCs) emissions (12103.42 µg/(g cooking material and oil)·h). Heating of lard produced the greatest particle mass concentration (0.75 mg/(g cooking material and oil)·h). The main finding was that sunflower and rapeseed oils produced the highest ROS concentrations (80.48 and 71.75 nmol/(g cooking material and oil)·h, respectively). ROS formation most likely occurred during the autoxidation of both polyunsaturated and monounsaturated fatty acids. Among all the tested parameters, only ROS concentrations exhibited consistency with cell viability and showed significant correlations with the expression levels of CYP1A1, HIF-1a, and especially with IL-8 (the marker for oxidative stress within the cell). These findings indicate that ROS concentration is potentially a suitable metric for direct assessment of exposure levels and potential toxicity.


Assuntos
Compostos Orgânicos Voláteis , Culinária , Células Epiteliais , Humanos , Óleos de Plantas , Espécies Reativas de Oxigênio , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
7.
J Environ Sci (China) ; 87: 184-193, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791491

RESUMO

Soot particles, mainly coming from fuel combustion, affect climate forcing through absorbing light and also result in adverse human health outcomes. Though biodiesel or additives blending with diesel was considered environmentally friendly, the understanding on absorbing and oxidative capacity of soot emitted from them are still unclear. The water-soluble organic carbon (WSOC) content, surface chemical structure, light absorption and oxidative potential (OPDTT) of soot from biodiesel/diesel and chemicals/diesel blends were investigated utilizing total organic carbon analyzer, X-ray photoelectron spectrometer, ultraviolet-visible spectrophotometry and dithiothreitol (DTT) assay. The differences and correlations between soot properties were statistically analyzed. Chemicals/diesel blends soot owned significantly higher WSOC content, ratio of mass absorbing efficiency (MAE) in 250 and 365 nm (E2/E3), OPDTT, and higher surface carbonyl content. Coconut biodiesel/diesel blends soot contained evidently higher aromatic carbon-oxygen single bond (Ar_C-O) content, and higher MAE365. The individual comparison of biodiesel/diesel blends showed 20% coconut biodiesel blend owned the lowest WSOC, E2/E3 and OPDTT, while highest Ar_C-O and MAE365, representing strongest absorbing properties. Association analysis showed OPDTT was significantly positively correlated with WSOC. Further, the evident negative correlation between MAE365 and OPDTT was observed. Our results showed coconut biodiesel/diesel blends soot induced lower levels of oxidative potential, whereas absorption of light was higher, which have far reaching consequences on climate forcing. Therefore, it is important to evaluate the balance point between light-absorbing properties and oxidative potential, under the wide use of biodiesel.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis , Material Particulado/análise , Emissões de Veículos/análise , Fuligem/química
8.
Environ Sci Technol ; 53(12): 6729-6737, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31075990

RESUMO

The chemical composition and evolution of secondary organic aerosol (SOA) in the atmosphere represents one of the largest uncertainties in our current understanding of air quality. Despite vast research, the toxicological mechanisms relating to adverse human health effects upon exposure to particulate matter are still poorly understood. Particle-bound reactive oxygen species (ROS) may substantially contribute to observed health effects by influencing aerosol oxidative potential (OP). The role of radicals in both the formation and aging of aerosol, as well as their contribution to aerosol OP, remains highly uncertain. The profluorescent spin trap BPEAnit (9,10-bis(phenylethynyl)anthracenenitroxide), previously utilized to study combustion-generated aerosol, has been applied to provide the first estimate of particle-bound radical concentrations in SOA. We demonstrate that SOA from different atmospherically important VOC precursors have different particle-bound radical concentrations, estimated for the ozonolysis of α-pinene (0.020 ± 0.0050 nmol/µg), limonene (0.0059 ± 0.0010 nmol/µg), and ß-caryophyllene (0.0025 ± 0.00080 nmol/µg), highlighting the potential importance of OH-initiated formation of particle-bound organic radicals. Additionally, the lifetime of particle-bound radical species in α-pinene SOA was estimated, and a pseudo-first-order rate constant of k = 7.3 ± 1.7 × 10-3 s-1 was derived, implying a radical lifetime on the order of minutes.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis , Atmosfera , Humanos , Monoterpenos , Material Particulado
9.
Environ Res ; 170: 194-202, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30590262

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death world-wide by 2020. Prolonged exposure to particulate matter is associated with COPD progression and mortality. Diesel emissions are a major contributor to particulate matter pollution. In this study we test a therapeutic antioxidant, N-acetylcysteine (NAC), for its ability to protect bronchial epithelial cells (pHBECs) from patients with COPD from adverse effects of diesel emission exposure. METHODS: pHBECs from patients with or without COPD were cultured at air-liquid interface (ALI). Cells were exposed to diesel emissions for 30 min with or without 3-h post-exposure treatment with 5 mM N-acetylcysteine (NAC). Filtered laboratory air was tested as a negative control. Cell responses (cell viability, inflammation and oxidative stress) and gene expression profiles for intracellular and immune signaling were assessed. RESULTS: Diesel emissions exposure increased IL-8 secretion and production, antioxidant production, and cytochrome P450 1a1 (CYP1a1) mRNA expression and suppressed superoxide dismutase-1 (SOD1) mRNA expression in bronchial epithelial cells from COPD patients. Treatment with N-acetyl cysteine attenuated the suppression of SOD1. Nanostring gene expression profiling of the filtered air controls showed COPD epithelial cells have increased expression of MHC class II and an interferon signaling profile. CONCLUSIONS: This study indicates that bronchial epithelial cells from COPD patients may be vulnerable to diesel emission exposure due to reduced antioxidant capacity, and elevated CYP1a1 mRNA expression. NAC did not appear to offer protection. Future research will be needed to explore other means of recovering oxidant capacity in COPD airways.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Doença Pulmonar Obstrutiva Crônica , Emissões de Veículos/análise , Células Epiteliais , Humanos , Material Particulado
10.
Sensors (Basel) ; 19(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640133

RESUMO

This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor (HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated with a minimum time resolution of 2.5 min. Details of the fluorimeter design and examples of data processing are provided, and results from a chamber study of side-stream cigarette smoke and ambient monitoring campaign in Guangzhou, China are presented. Primary cigarette smoke was shown to have both short-lived (t1/2 = 27 min) and long-lived (t1/2 = indefinite) PM-bound reactive oxygen species (ROS) components which had previously only been observed in secondary organic aerosol (SOA).

11.
Sensors (Basel) ; 16(7)2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27420065

RESUMO

Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

12.
Environ Sci Technol ; 48(12): 6588-96, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24847803

RESUMO

The charge and chemical composition of ambient particles in an urban environment were determined using a neutral particle and air ion spectrometer and an aerodyne compact time-of-flight aerosol mass spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulfate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulfate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralization lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulfuric acid react to form ammonium and sulfate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulfuric acid, with limited input from organics.


Assuntos
Aerossóis/análise , Aerossóis/química , Cidades , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Atmosféricos/análise , Íons , Espectrometria de Massas , Conceitos Meteorológicos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/química , Análise de Componente Principal , Fatores de Tempo
13.
Sci Total Environ ; 929: 172644, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649054

RESUMO

Ammonia (NH3) contributes significantly to the formation of particulate matter, and vehicles represent a major source of NH3 in urban areas. However, there remains a lack of comprehensive understanding regarding the emission characteristics of NH3 from vehicles. This study conducted real-world driving emission (RDE) measurements and dynamometer measurements on 33 light-duty gasoline vehicles (LDGVs) to investigate their emission characteristics and impact factors. The tested vehicles include China 3 to China 6 emission standards. The results show that the average NH3 emission factors of LDGVs decreased by >80 % from China 3 to China 6 emission standards. The results obtained from dynamometer measurements reveal that independent from other conventional pollutants (such as HCHO and NOx), NH3 emissions do not exhibit significant emission peaks during the hot- or cold-start phase. The RDE measurement covers a more comprehensive range of the vehicle's real-world driving conditions, resulting in higher NH3 emission factors compared with dynamometer measurements. The analysis of RDE measurements revealed that NH3 emissions are influenced by vehicle speeds and accelerations. Acceleration processes contribute approximately 50 % of total NH3 emissions over a driving period. Finally, using real driving speed, acceleration, and road gradient as input parameters, an NH3 emission rate model based on vehicle specific power was developed. This emission rate model enables a more precise reflection of LDGVs' NH3 emissions of LDGVs across diverse driving conditions and provides valuable data support for high-resolution inventories of vehicle NH3 emissions.

14.
Environ Sci Technol ; 47(4): 1904-12, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23343018

RESUMO

Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.


Assuntos
Gases/análise , Material Particulado/análise , Emissões de Veículos , Algoritmos , Biocombustíveis , Técnicas de Apoio para a Decisão , Desenho de Equipamento , Etanol , Efeito Estufa
15.
PNAS Nexus ; 2(3): pgad087, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37007717

RESUMO

Understanding the mechanisms which inactivate airborne viruses is a current challenge. The composition of human respiratory aerosol is poorly understood and needs to be adequately investigated for use in aerovirology studies. Here, the physicochemical properties of porcine respiratory fluid (PRF) from the trachea and lungs were investigated both in bulk solutions and in aerosols. The mass ratio of Na:K in PRF compared with cell culture media (Dulbecco's Modified Eagle Medium, DMEM), which is frequently used in aerovirology studies, was significantly lower (∼2:1 vs ∼16:1). PRF contained significantly more potassium and protein than DMEM. PRF aerosols of all samples were similarly hygroscopic to human respiratory aerosol. PRF particles could nucleate with spatially separated crystals, indicating that the protein matrix was sufficiently viscous to prevent the complete coalescence of aqueous salts prior to efflorescence. The effects of these differences in compositions on the viability of viruses are currently not well understood. The virus suspensions in aerovirology studies need to be reconsidered to adequately reflect a real-world expiration scenario.

16.
Sci Total Environ ; 903: 166192, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567283

RESUMO

Aerosol acidity plays a crucial role in atmospheric physicochemical processes, climate change and human health, particularly in the formation of secondary organic aerosols (SOA). However, understanding the characteristics and driving factors of aerosol acidity in background mountains has been limited. In this study, we conducted intensive field measurements in the Nanling mountains during the dry and wet seasons to analyze aerosol pH characteristics and their driving factors using sensitivity tests. The mean aerosol pH in the background mountains was found to be 2.68 ± 0.55, with values ranging from 0.38 to 4.44, significantly lower than predicted values in northern China. Sensitivity tests revealed that aerosol acidity in the background atmosphere was more responsive to dominant chemical species (T-NH3 (= NH4+ + NH3) and SO42-) rather than relative humidity and temperature. Additionally, we observed that sulfate and ammonium, transported occasionally by dryer northern air masses, had a substantial impact on decreasing aerosol pH at the site. Similar to the southeastern United States, NH4+/NH3 also dominated the total buffer capacity of aerosol acidity in the Nanling mountains. The strong aerosol acidity in this area is expected to have adverse effects on regional air quality and climate by enhancing SOA formation and regulating the dry deposition of inorganic reactive nitrogen.

17.
J Hazard Mater ; 460: 132516, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703733

RESUMO

The increasing share of using biofuels in vehicles (mandated by current regulations) leads to a reduction in particle size, resulting in increased particle toxicity. However, existing regulations disregarded small particles (sub-23 nm) that are more toxic. This impact is more significant during vehicle cold-start operation, which is an inevitable frequent daily driving norm where after-treatment systems prove ineffective. This study investigates the impact of biofuel and lubricating oil (as a source of nanoparticles) on the concentration, size distribution, median diameter of PN and PM, and their proportion at size ranges within accumulation and nucleation modes during four phases of cold-start and warm-up engine operation (diesel-trucks/busses application). The fuels used were 10% and 15% biofuel and with the addition of 5% lubricating oil to the fuel. Results show that as the engine warms up, PN for all the fuels increases and the size of particles decreases. PN concentration with a fully warmed-up engine was up to 132% higher than the cold-start. Sub-23 nm particles accounted for a significant proportion of PN (9%) but a smaller proportion of PM (0.1%). The fuel blend with 5% lubricating oil showed a significant increase in PN concentration and a decrease in particle size during cold-start.

18.
Sci Total Environ ; 856(Pt 2): 159143, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195151

RESUMO

Black carbon (BC) aerosols significantly contribute to radiative budgets globally, however their actual contributions remain poorly constrained in many under-sampled ocean regions. The tropical waters north of Australia are a part of the Indo-Pacific warm pool, regarded as a heat engine of global climate, and are in proximity to large terrestrial sources of BC aerosols such as fossil fuel emissions, and biomass burning emissions from northern Australia. Despite this, measurements of marine aerosols, especially BC remain elusive, leading to large uncertainties and discrepancies in current chemistry-climate models for this region. Here, we report the first comprehensive measurements of aerosol properties collected over the tropical warm pool in Australian waters during a voyage in late 2019. The non-marine related aerosol emissions observed in the Arafura Sea region were more intense than in the Timor Sea marine region, as the Arafura Sea was subject to greater continental outflows. The median equivalent BC (eBC) concentration in the Arafura Sea (0.66 µg m-3) was slightly higher than that in the Timor Sea (0.49 µg m-3). Source apportionment modelling and back trajectory analysis and tracer studies consistently suggest fossil fuel combustion eBC (eBCff) was the dominant contributor to eBC across the entire voyage region, with biomass burning eBC (eBCbb) making significant additional contributions to eBC in the Arafura Sea. eBCff (possibly from ship emissions or oil and gas rigs and their associated activities) and cloud condensation nuclei (CCN) were robustly correlated in the Timor Sea data, whereas eBCbb positively correlated to CCN in the Arafura Sea, suggesting different sources and atmospheric processing pathways occurred in these two regions. This work demonstrates the substantial impact that fossil fuel and biomass burning emissions can have on the composition of aerosols and cloud processes in the remote tropical marine atmosphere, and their potentially significant contribution to the radiative balance of the rapidly warming Indo-Pacific warm pool.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Austrália , Fuligem/análise , Aerossóis/análise , Combustíveis Fósseis , Biomassa , Carbono/análise , Estações do Ano
19.
Respirology ; 17(2): 201-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22126432

RESUMO

Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. While epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel PM (DPM) and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Nível de Saúde , Material Particulado/efeitos adversos , Doenças Respiratórias/epidemiologia , Emissões de Veículos , Humanos , Morbidade/tendências , Doenças Respiratórias/etiologia , Fatores de Risco
20.
J R Soc Interface ; 18(178): 20210209, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947221

RESUMO

The airborne dynamics of respiratory droplets, and the transmission routes of pathogens embedded within them, are governed primarily by the diameter of the particles. These particles are composed of the fluid which lines the respiratory tract, and is primarily mucins and salts, which will interact with the atmosphere and evaporate to reach an equilibrium diameter. Measuring organic volume fraction (OVF) of cough aerosol has proved challenging due to large variability and low material volume produced after coughing. Here, the diametric hygroscopic growth factors (GF) of the cough aerosol produced by healthy participants were measured in situ using a rotating aerosol suspension chamber and a humidification tandem differential mobility analyser. Using hygroscopicity models, it was estimated that the average OVF in the evaporated cough aerosol was 0.88 ± 0.07 and the average GF at 90% relative humidity (RH) was 1.31 ± 0.03. To reach equilibrium in dry air the droplets will reduce in diameter by a factor of approximately 2.8 with an evaporation factor of 0.36 ± 0.05. Hysteresis was observed in cough aerosol at RH = ∼35% and RH = ∼65% for efflorescence and deliquescence, respectively, and may depend on the OVF. The same behaviour and GF were observed in nebulized bovine bronchoalveolar lavage fluid.


Assuntos
Atmosfera , Tosse , Aerossóis , Animais , Bovinos , Humanos , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA