Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2404426, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058212

RESUMO

Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window. The resulting QDs exhibit an emission wavelength up to 725 nm with a narrow peak full width at half maximum (FWHM) down to 107 meV (45 nm). To enhance the biocompatibility and chemical stability of the QDs, their surface is further capped with a layer of amorphous alumina resulting in an InP/ZnSe/ZnS/Al2O3 heterostructure. This surface passivation not only ensures environmental- and photostability but also enhances the photoluminescence quantum yield (PLQY). The alumina capping enables the aqueous phase transfer via surface ligand exchange using mercaptopropionic acid (MPA) while maintaining the initial quantum yield. The resulting QDs demonstrate a significant potential for advancing next-generation optoelectronic technologies and bio-applications.

2.
J Am Chem Soc ; 145(10): 5970-5981, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866828

RESUMO

Nonpyrophoric aminophosphines reacted with indium(III) halides in the presence of zinc chloride have emerged as promising phosphorus precursors in the synthesis of colloidal indium phosphide (InP) quantum dots (QDs). Nonetheless, due to the required P/In ratio of 4:1, it remains challenging to prepare large-sized (>5 nm), near-infrared absorbing/emitting InP QDs using this synthetic scheme. Furthermore, the addition of zinc chloride leads to structural disorder and the formation of shallow trap states inducing spectral broadening. To overcome these limitations, we introduce a synthetic approach relying on the use of indium(I) halide, which acts as both the indium source and reducing agent for aminophosphine. The developed zinc-free, single-injection method gives access to tetrahedral InP QDs with an edge length > 10 nm and narrow size distribution. The first excitonic peak is tunable from 450 to 700 nm by changing the indium halide (InI, InBr, InCl). Kinetic studies using phosphorus NMR reveal the coexistence of two reaction pathways, the reduction of transaminated aminophosphine by In(I) and via redox disproportionation. Etching the surface of the obtained InP QDs at room temperature with in situ-generated hydrofluoric acid (HF) leads to strong photoluminescence (PL) emission with a quantum yield approaching 80%. Alternatively, surface passivation of the InP core QDs was achieved by low-temperature (140 °C) ZnS shelling using the monomolecular precursor zinc diethyldithiocarbamate. The obtained InP/ZnS core/shell QDs that emit in a range of 507-728 nm exhibit a small Stokes shift (110-120 meV) and a narrow PL line width (112 meV at 728 nm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA