Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502091

RESUMO

Triple-negative breast cancer (TNBC) tends to metastasize to the brain, a step that worsens the patient's prognosis. The specific hallmarks that determine successful metastasis are motility and invasion, microenvironment modulation, plasticity, and colonization. Zinc, an essential trace element, has been shown to be involved in all of these processes. In this work, we focus our attention on the potential role of zinc during TNBC metastasis. We used MDA-MB-BrM2 (BrM2) cells, a brain metastasis model derived from the parental TNBC cell line MDA-MB-231. Our studies show that BrM2 cells had double the zinc content of MDA-MB-231 cells. Moreover, exploring different metastatic hallmarks, we found that the zinc concentration is especially important in the microenvironment modulation of brain metastatic cells, enhancing the expression of SerpinB2. Furthermore, we show that zinc promotes the tumorigenic capacity of breast cancer stem cells. In addition, by causing a disturbance in MDA-MB-231 zinc homeostasis by overexpressing the Zip4 transporter, we were able to increase tumorigenicity. Nevertheless, this strategy did not completely recapitulate the BrM2 metastatic phenotype. Altogether, our work suggests that zinc plays an important role in the transformative steps that tumoral cells take to acquire tumorigenic potential and niche specificity.


Assuntos
Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral , Zinco/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Inibidor 2 de Ativador de Plasminogênio/genética , Inibidor 2 de Ativador de Plasminogênio/metabolismo
2.
Acc Chem Res ; 46(3): 743-9, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22786674

RESUMO

Nanomaterials offer opportunities to construct novel compounds for many different fields. Applications include devices for energy, including solar cells, batteries, and fuel cells, and for health, including contrast agents and mediators for photodynamic therapy and hyperthermia. Despite these promising applications, any new class of materials also bears a potential risk for human health and the environment. The advantages and innovations of these materials must be thoroughly compared against risks to evaluate each new nanomaterial. Although nanomaterials are often used intentionally, they can also be released unintentionally either inside the human body, through wearing of a prosthesis or the inhalation of fumes, or into the environment, through mechanical wear or chemical powder waste. This possibility adds to the importance of understanding potential risks from these materials. Because of fundamental differences in nanomaterials, sound risk assessment currently requires that researchers perform toxicology studies on each new nanomaterial. However, if toxicity could be correlated to the basic physicochemical properties of nanomaterials, those relationships could allow researchers to predict potential risks and design nanomaterials with minimum toxicity. In this Account we describe the physicochemical properties of nanoparticles (NPs) and how they can be determined and discuss their general importance for cytotoxicity. For simplicity, we focus primarily on in vitro toxicology that examines the interaction of living cells with engineered colloidal NPs with an inorganic core. Serious risk assessment of NPs will require additional in vivo studies. Basic physicochemical properties of nanoparticulate materials include colloidal stability, purity, inertness, size, shape, charge, and their ability to adsorb environmental compounds such as proteins. Unfortunately, the correlation of these properties with toxicity is not straightforward. First, for NPs released either unintentionally or intentionally, it can be difficult to pinpoint these properties in the materials. Therefore, researchers typically use NP models with better defined properties, which don't include the full complexity of most industrially relevant materials. In addition, many of these properties are strongly mutually connected. Therefore, it can be difficult to vary individual properties in NP models while keeping the others constant.


Assuntos
Coloides/química , Nanopartículas/toxicidade , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fenômenos Químicos , Estabilidade de Medicamentos , Humanos , Modelos Biológicos , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
3.
J Nanobiotechnology ; 12: 35, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25223512

RESUMO

BACKGROUND: Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. RESULTS: We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. CONCLUSIONS: In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Silício/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imunoterapia/métodos , Dose Letal Mediana , Nanopartículas/química , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Silício/administração & dosagem , Solubilidade
4.
Chemosphere ; 361: 142529, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838862

RESUMO

A novel nanocomposite consisting of Fe3O4-loaded tin oxyhydroxy-chloride is demonstrated as an efficient adsorbent for the removal of hexavalent chromium in compliance to the new drinking water regulation. This study introduces a continuous-flow production of the nanocomposite through the separate synthesis of (i) 40 nm Fe3O4 nanoparticles and (ii) multilayered spherical arrangements of a tin hydroxy-chloride identified as abhurite, before the application of a wet-blending process. The homogeneous distribution of Fe3O4 nanoparticles on the abhurite's morphology, features nanocomposite with magnetic response whereas the 10 % loaded nanocomposite preserves a Cr(VI) uptake capacity of 7.2 mg/g for residual concentrations below 25 µg/L. Kinetic and thermodynamic examination of the uptake evolution indicates a relative rapid Cr(VI) capture dominated by interparticle diffusion and a spontaneous endothermic process mediated by reduction to Cr(III). The efficiency of the optimized nanocomposite was validated in a pilot unit operating in a sequence of a stirring reactor and a rotary magnetic separator showing an alternative and competitive application path than typical fixed-bed filtration, which is supported by the absence of any acute cellular toxicity according to human kidney cell viability tests.


Assuntos
Cromo , Água Potável , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Cromo/química , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Água Potável/química , Adsorção , Cinética , Humanos , Termodinâmica
5.
J Am Chem Soc ; 135(19): 7098-101, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23647089

RESUMO

We report a procedure to prepare highly monodisperse copper telluride nanocubes, nanoplates, and nanorods. The procedure is based on the reaction of a copper salt with trioctylphosphine telluride in the presence of lithium bis(trimethylsilyl)amide and oleylamine. CuTe nanocrystals display a strong near-infrared optical absorption associated with localized surface plasmon resonances. We exploit this plasmon resonance for the design of surface-enhanced Raman scattering sensors for unconventional optical probes. Furthermore, we also report here our preliminary analysis of the use of CuTe nanocrystals as cytotoxic and photothermal agents.


Assuntos
Cobre/química , Citotoxinas/química , Nanopartículas/química , Telúrio/química , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Citotoxinas/toxicidade , Hipertermia Induzida , Camundongos , Modelos Moleculares , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Fotoquimioterapia , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Telúrio/toxicidade
6.
Angew Chem Int Ed Engl ; 52(51): 13694-8, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24222643

RESUMO

An optical sensor was developed for the quantitative determination of intracellular nitric oxide. The sensor consists of plasmonic nanoprobes that have a coating of mesoporous silica and an inner gold island film functionalized with a chemoreceptor for NO.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/uso terapêutico , Óxidos de Nitrogênio/química
7.
ACS Mater Au ; 3(2): 164-175, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089722

RESUMO

Oxidative stress is involved in many aging-related pathological disorders and is the result of defective cellular management of redox reactions. Particularly, hydrogen peroxide (H2O2), is a major byproduct and a common oxidative stress biomarker. Monitoring its dynamics and a direct correlation to diseases remains a challenge due to the complexity of redox reactions. Sensitivity and specificity are major drawbacks for H2O2 sensors regardless of their readout. Luminiscent boronate-based probes such as 3-mercaptophenylboronic acid (3-MPBA) are emerging as the most effective quantitation tool due to their specificity and sensitivity. Problems associated with these probes are limited intracellular sensing, water solubility, selectivity, and quenching. We have synthesized a boronate-based nanosensor with a surface-enhanced Raman spectroscopy (SERS) readout to solve these challenges. Furthermore, we found out that environmental pH gradients, as found in biological samples, affect the sensitivity of boronate-based sensors. When the sensor is in an alkaline environment, the oxidation of 3-MPBA by H2O2 is more favored than in an acidic environment. This leads to different H2O2 measurements depending on pH. To solve this issue, we synthesized a multiplex nanosensor capable of concomitantly quantifying pH and H2O2. Our nanosensor first measures the local pH and based on this value, provides the amount of H2O2. It seems that this pH-dependent sensitivity effect applies to all boronic acid based probes. We tested the multiplexing ability by quantitatively measuring intra- and extracellular pH and H2O2 dynamics under physiological and pathological conditions on healthy cells and cells in which H+ and/or H2O2 homeostasis has been altered.

8.
Front Med (Lausanne) ; 10: 1212949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601794

RESUMO

The lack of specific regulatory guidelines for nanotechnology-enabled health products (NHPs) is hampering development and patient access to these innovative technologies. Namely, there is an urgent need for harmonized regulatory definitions and classification systems that allow establishing a standardized framework for NHPs regulatory assessment. In this work, a novel classification system for NHPs is proposed. This classification can be applied for sorting nano-based innovations and regulatory guidelines according to the type of NHPs they address. Said methodology combines scientific and regulatory principles and it is based on the following criteria: principal mode of action, chemical composition, medical purpose and nanomanufacturing approach. This classification system could serve as a useful tool to sensor the state of the art of NHPs which is particularly useful for regulators to support strategy development of regulatory guidelines. Additionally, this tool would also allow manufacturers of NHPs to align their development plans with their applicable guidelines and standards and thus fulfill regulators expectations.

9.
Front Med (Lausanne) ; 10: 1308047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298514

RESUMO

Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called "valley of death" in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.

10.
Small ; 8(17): 2731-42, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22730166

RESUMO

A versatile method for decorating magnetic nanobeads (being composite materials from polymers and superparamagnetic nanoparticles) with silver nanoparticles of 3-6 nm size is presented. Control over the silver nanoparticle coverage at the nanobead surface is achieved by changing the reaction parameters. Moreover, the silver-decorated magnetic nanobeads (Ag-MNBs) are studied with respect to their in vitro cytotoxicity on two distinct tumour cell lineages under different parameters, i.e., dose, incubation time, magnetic field applied during the culturing, silver ion leakage, and colloidal stability. It is found that enhanced magnetically mediated cellular uptake and silver ion leakage from the Ag-MNBs surface are the main factors which affect the toxicity of the Ag-MNBs and allow the half-maximal inhibitory dose of silver to be reduced to only 32 µg mL(-1) . Furthermore, a synergic cytotoxicity induced by photo-activation of silver nanoparticles was also found.


Assuntos
Antineoplásicos/química , Magnetismo , Nanopartículas Metálicas , Prata/química , Antineoplásicos/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Processos Fotoquímicos , Prata/metabolismo
11.
J Nanobiotechnology ; 10: 28, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22781560

RESUMO

Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate.The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar.This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.


Assuntos
Dextranos/metabolismo , Endocitose , Nanopartículas/química , Linhagem Celular Tumoral , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Espaço Intracelular/metabolismo , Cinética , Nanopartículas de Magnetita , Imagens de Fantasmas , Polietilenoimina/química
12.
Sci Rep ; 12(1): 8977, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643864

RESUMO

Biosensors, especially those with a SERS readout, are required for an early and precise healthcare diagnosis. Unreproducible SERS platforms hamper clinical SERS. Here we report a synthetic procedure to obtain stabile, reproducible and robust highly-SERS performing nanocomposites for labelling. We controlled the NPs agglomeration and codification which resulted in an increased number of hot spots, thus exhibiting reproducible and superior Raman enhancement. We studied fundamental aspects affecting the plasmonic thiol bond resulting in pH exhibiting a determining role. We validated their biosensing performance by designing a SERS-based detection assay model for SARS-CoV-2. The limit of detection of our assay detecting the spike RBD was below 10 ng/mL.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , SARS-CoV-2 , Análise Espectral Raman/métodos
13.
Acta Biomater ; 142: 308-319, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104657

RESUMO

We report the synthesis of plasmonic nanocapsules and the cellular responses they induce in 3D melanoma models for their perspective use as a photothermal therapeutic agent. The wall of the nanocapsules is composed of polyelectrolytes. The inner part is functionalized with discrete gold nanoislands. The cavity of the nanocapsules contains a fluorescent payload to show their ability for loading a cargo. The nanocapsules exhibit simultaneous two-photon luminescent, fluorescent properties and X-ray contrasting ability. The average fluorescence lifetime (τ) of the nanocapsules measured with FLIM (0.3 ns) is maintained regardless of the intracellular environment, thus proving their abilities for bioimaging of models such as 3D spheroids with a complex architecture. Their multimodal imaging properties are exploited for the first time to study tumorspheres cellular responses exposed to the nanocapsules. Specifically, we studied cellular uptake, toxicity, intracellular fate, generation of reactive oxygen species, and effect on the levels of hypoxia by using multi-photon and confocal laser scanning microscopy. Because of the high X-ray attenuation and atomic number of the gold nanostructure, we imaged the nanocapsule-cell interactions without processing the sample. We confirmed maintenance of the nanocapsules' geometry in the intracellular milieu with no impairment of the cellular ultrastructure. Furthermore, we observed the lack of cellular toxicity and no alteration in oxygen or reactive oxygen species levels. These results in 3D melanoma models contribute to the development of these nanocapsules for their exploitation in future applications as agents for imaging-guided photothermal therapy. STATEMENT OF SIGNIFICANCE: The novelty of the work is that our plasmonic nanocapsules are multimodal. They are responsive to X-ray and to multiphoton and single-photon excitation. This allowed us to study their interaction with 2D and 3D cellular structures and specifically to obtain information on tumor cell parameters such as hypoxia, reactive oxygen species, and toxicity. These nanocapsules will be further validated as imaging-guided photothermal probes.


Assuntos
Melanoma , Nanocápsulas , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Hipóxia , Melanoma/diagnóstico por imagem , Nanocápsulas/química , Espécies Reativas de Oxigênio
14.
Small ; 7(22): 3113-27, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21928301

RESUMO

Water solubilization of nanoparticles is a fundamental prerequisite for many biological applications. To date, no single method has emerged as ideal, and several different approaches have been successfully utilized. These 'phase-transfer' strategies are reviewed, indicating key advantages and disadvantages, and a discussion of conjugation strategies is presented. Coating of hydrophobic nanoparticles with amphiphilic polymers provides a generic pathway for the phase transfer of semiconductor, magnetic, metallic, and upconverting nanoparticles from nonpolar to polar environments. Amphiphilic polymers that include maleimide groups can be readily functionalized with chemical groups for specific applications. In the second, experimental part, some of the new chemical features of such polymer-capped nanoparticles are demonstrated. In particular, nanoparticles to which a pH sensitive fluorophore has been attached are described, and their use for intracellular pH-sensing demonstrated. It is shown that the properties of analyte-sensitive fluorophores can be tuned by using interactions with the underlying nanoparticles.


Assuntos
Nanopartículas/química , Polímeros/química , Coloração e Rotulagem/métodos , Íons , Transição de Fase
15.
Macromol Rapid Commun ; 32(2): 186-90, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21433138

RESUMO

Here we report for the first time the design and expression of highly charged, unfolded protein polymers based on elastin-like peptides (ELPs). Positively and negatively charged variants were achieved by introducing lysine and glutamic acid residues, respectively, within the repetitive pentapeptide units. Subsequently it was demonstrated that the monodisperse protein polyelectrolytes with precisely defined amino acid compositions, sequences, and stereochemistries can be transferred into superstructures exploiting their electrostatic interactions. Hollow capsules were assembled from oppositely charged protein chains by using the layer-by-layer technique. The structures of the capsules were analyzed by various microscopy techniques revealing the fabrication of multilayer containers. Due to their low toxicity in comparison to other polyelectrolytes, supercharged ELPs are appealing candidates for the construction of electrostatically induced scaffolds in biomedicine.


Assuntos
Portadores de Fármacos/química , Oligopeptídeos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Elastina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Lisina/química , Lisina/metabolismo , Camundongos , Estrutura Molecular , Células NIH 3T3 , Oligopeptídeos/biossíntese , Oligopeptídeos/farmacologia , Desdobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Eletricidade Estática , Estereoisomerismo
16.
J Nanobiotechnology ; 9: 46, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21982200

RESUMO

An electrochemical sensor for p-aminophenyl phosphate (pAPP) is reported. It is based on the electrochemical conversion of 4-aminophenol (4AP) at a quantum dot (QD) modified electrode under illumination. Without illumination no electron transfer and thus no oxidation of 4AP can occur. pAPP as substrate is converted by the enzyme alkaline phosphatase (ALP) to generate 4AP as a product. The QDs are coupled via 1,4-benzenedithiol (BDT) linkage to the surface of a gold electrode and thus allow potential-controlled photocurrent generation. The photocurrent is modified by the enzyme reaction providing access to the substrate detection. In order to develop a photobioelectrochemical sensor the enzyme is immobilized on top of the photo-switchable layer of the QDs. Immobilization of ALP is required for the potential possibility of spatially resolved measurements. Geometries with immobilized ALP are compared versus having the ALP in solution. Data indicate that functional immobilization with layer-by-layer assembly is possible. Enzymatic activity of ALP and thus the photocurrent can be described by Michaelis- Menten kinetics. pAPP is detected as proof of principle investigation within the range of 25 µM-1 mM.


Assuntos
Fosfatase Alcalina/metabolismo , Aminofenóis/metabolismo , Luz , Pontos Quânticos , Aminofenóis/química , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Hidrólise , Cinética , Oxirredução
17.
Nano Lett ; 10(10): 3914-21, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20836536

RESUMO

Lipospheres made from soy bean oil and a combination of the cationic lipid Metafectene and the helper lipid dioleoylphosphatidyl-ethanolamine were functionalized with magnetic nanoparticles (NPs) and small interfering RNA (siRNA). The resulting magnetic lipospheres loaded with siRNA are proven here as efficient nonviral vectors for gene silencing. Embedding magnetic NPs in the shell of lipospheres allows for magnetic force-assisted transfection (magnetofection) as well as magnetic targeting in both static and fluidic conditions mimicking the bloodstream.


Assuntos
Inativação Gênica , Lipídeos/química , Lipossomos/química , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Animais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Magnetismo , Camundongos , Células NIH 3T3 , Fosfatidiletanolaminas/química , Óleos de Plantas/química , Glycine max/química
18.
Front Immunol ; 12: 684612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220835

RESUMO

Mesoporous silica nanoparticles have drawn increasing attention as promising candidates in vaccine delivery. Previous studies evaluating silica-based vaccine delivery systems concentrated largely on macromolecular antigens, such as inactivated whole viruses. In this study, we synthesized dendritic mesoporous silica nanoparticles (DMSNs), and we evaluated their effectiveness as delivery platforms for peptide-based subunit vaccines. We encapsulated and tested in vivo an earlier reported foot-and-mouth disease virus (FMDV) peptide vaccine (B2T). The B2T@DMSNs formulation contained the peptide vaccine and the DMSNs without further need of other compounds neither adjuvants nor emulsions. We measured in vitro a sustained release up to 930 h. B2T@DMSNs-57 and B2T@DMSNs-156 released 23.7% (135 µg) and 22.8% (132 µg) of the total B2T. The formation of a corona of serum proteins around the DMSNs increased the B2T release up to 61% (348 µg/mg) and 80% (464 µg/mg) for B2T@DMSNs-57 and B2T@DMSNs-156. In vitro results point out to a longer sustained release, assisted by the formation of a protein corona around DMSNs, compared to the reference formulation (i.e., B2T emulsified in Montanide). We further confirmed in vivo immunogenicity of B2T@DMSNs in a particle size-dependent manner. Since B2T@DMSNs elicited specific immune responses in mice with high IgG production like the reference B2T@Montanide™, self-adjuvant properties of the DMSNs could be ascribed. Our results display DMSNs as efficacious nanocarriers for peptide-based vaccine administration.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Nanopartículas/química , Adjuvantes Imunológicos , Animais , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Febre Aftosa/prevenção & controle , Camundongos , Tamanho da Partícula , Células RAW 264.7 , Dióxido de Silício/farmacologia , Vacinação , Vacinas de Subunidades Antigênicas/farmacologia
19.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361181

RESUMO

A magnetic nanocomposite, consisting of Fe3O4 nanoparticles embedded into a Mg/Al layered double hydroxide (LDH) matrix, was developed for cancer multimodal therapy, based on the combination of local magnetic hyperthermia and thermally induced drug delivery. The synthesis procedure involves the sequential hydrolysis of iron salts (Fe2+, Fe3+) and Mg2+/Al3+ nitrates in a carbonate-rich mild alkaline environment followed by the loading of 5-fluorouracil, an anionic anticancer drug, in the interlayer LDH space. Magnetite nanoparticles with a diameter around 30 nm, dispersed in water, constitute the hyperthermia-active phase able to generate a specific loss of power of around 500 W/g-Fe in an alternating current (AC) magnetic field of 24 kA/m and 300 kHz as determined by AC magnetometry and calorimetric measurements. Heat transfer was found to trigger a very rapid release of drug which reached 80% of the loaded mass within 10 min exposure to the applied field. The potential of the Fe3O4/LDH nanocomposites as cancer treatment agents with minimum side-effects, owing to the exclusive presence of inorganic phases, was validated by cell internalization and toxicity assays.

20.
Nanoscale ; 13(31): 13256-13272, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477734

RESUMO

We used hyperspectral-enhanced dark field microscopy for studying physicochemical changes in biomaterials by tracking their unique spectral signatures along their pathway through different biological environments typically found in any biomedical application. We correlate these spectral signatures with discrete environmental features causing changes in nanoparticles' physicochemical properties. We use this correlation to track the nanoparticles intracellularly and to assess the impact of these changes on their functionality. We focus on one example of a photothermal nanocomposite, i.e., polymer-coated gold/copper sulfide nanoparticles, because their performance depends on their localized surface plasmon peak, which is highly sensitive to environmental changes. We found spectral differences both in the dependence of time and discrete environmental factors, affecting the range of illumination wavelengths that can be used to activate the functionality of these types of nanoparticles. The presence of proteins (protein corona) and the increase in ionic strength induce a spectral broadening towards the NIR region which we associated with nanoparticles' agglomeration. In acidic environments, such as that of the lysosome, a red shift was also observed in addition to a decrease in the scattering intensity probably associated with a destabilization of the proteins and/or the change in the net charge of the polymer around the nanoparticles. We observed a loss of the photo-excitation potential of those nanoparticles exposed to acidic conditions in the <600 nm spectral rage. In a similar manner, ageing induces a transitioning from a broad multipeak spectrum to a distinct shoulder with time (up to 8 months) with the loss of spectral contribution in the 450-600 nm range. Hence, a fresh preparation of nanoparticles before their application would be recommended for an optimal performance. We highlight the impact of ageing and the acidic environment on the responsiveness of this type of plasmonic nanoparticle. Regardless of the spectral differences found, polymer-coated gold/copper sulfide nanoparticles retained their photothermal response as demonstrated in vitro upon two-photon irradiation. This could be ascribed to their robust geometry provided by the polymer coating. These results should be useful to rationally design plasmonic photothermal probes.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre , Ouro , Polímeros , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA