Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 16(6): e1008822, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32497040

RESUMO

Insecticide resistance in malaria vectors threatens to reverse recent gains in malaria control. Deciphering patterns of gene flow and resistance evolution in malaria vectors is crucial to improving control strategies and preventing malaria resurgence. A genome-wide survey of Anopheles funestus genetic diversity Africa-wide revealed evidences of a major division between southern Africa and elsewhere, associated with different population histories. Three genomic regions exhibited strong signatures of selective sweeps, each spanning major resistance loci (CYP6P9a/b, GSTe2 and CYP9K1). However, a sharp regional contrast was observed between populations correlating with gene flow barriers. Signatures of complex molecular evolution of resistance were detected with evidence of copy number variation, transposon insertion and a gene conversion between CYP6P9a/b paralog genes. Temporal analyses of samples before and after bed net scale up suggest that these genomic changes are driven by this control intervention. Multiple independent selective sweeps at the same locus in different parts of Africa suggests that local evolution of resistance in malaria vectors may be a greater threat than trans-regional spread of resistance haplotypes.


Assuntos
Anopheles/genética , Evolução Molecular , Genoma de Inseto/genética , Resistência a Inseticidas/genética , Malária/prevenção & controle , Mosquitos Vetores/genética , África , Alelos , Animais , Anopheles/parasitologia , Família 6 do Citocromo P450/genética , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis/genética , Fluxo Gênico , Loci Gênicos , Haplótipos , Humanos , Proteínas de Insetos/genética , Malária/parasitologia , Malária/transmissão , Metagenômica , Controle de Mosquitos/métodos , Polimorfismo Genético , Piretrinas , Sequenciamento Completo do Genoma
2.
Mol Ecol ; 31(13): 3642-3657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35546741

RESUMO

Metabolic resistance to pyrethroids is a menace to the continued effectiveness of malaria vector controls. Its molecular basis is complex and varies geographically across Africa. Here, we used a multi-omics approach, followed-up with functional validation to show that a directionally selected haplotype of a cytochrome P450, CYP9K1 is a major driver of resistance in Anopheles funestus. A PoolSeq GWAS using mosquitoes alive and dead after permethrin exposure, from Malawi and Cameroon, detected candidate genomic regions, but lacked consistency across replicates. Targeted sequencing of candidate resistance genes detected several SNPs associated with known pyrethroid resistance QTLs. The most significant SNPs were in the cytochrome P450 CYP304B1 (Cameroon), CYP315A1 (Uganda) and the ABC transporter gene ABCG4 (Malawi). However, when comparing field resistant mosquitoes to laboratory susceptible, the pyrethroid resistance locus rp1 and SNPs around the ABC transporter ABCG4 were consistently significant, except for Uganda where SNPs in the P450 CYP9K1 was markedly significant. In vitro heterologous metabolism assays with recombinant CYP9K1 revealed that it metabolises type II pyrethroid (deltamethrin; 64% depletion) but not type I (permethrin; 0%), while moderately metabolising DDT (17%). CYP9K1 exhibited reduced genetic diversity in Uganda underlying an extensive selective sweep. Furthermore, a glycine to alanine (G454A) amino acid change in CYP9K1 was fixed in Ugandan mosquitoes but not in other An. funestus populations. This study sheds further light on the evolution of metabolic resistance in a major malaria vector by implicating more genes and variants that can be used to design field-applicable markers to better track resistance Africa-wide.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Haplótipos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/genética , Mosquitos Vetores/genética , Permetrina/metabolismo , Permetrina/farmacologia , Piretrinas/farmacologia , Uganda
3.
Mol Ecol ; 29(22): 4395-4411, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32974960

RESUMO

Elucidating the complex evolutionary armory that mosquitoes deploy against insecticides is crucial to maintain the effectiveness of insecticide-based interventions. Here, we deciphered the role of a 6.5-kb structural variation (SV) in driving cytochrome P450-mediated pyrethroid resistance in the malaria vector, Anopheles funestus. Whole-genome pooled sequencing detected an intergenic 6.5-kb SV between duplicated CYP6P9a/b P450s in pyrethroid-resistant mosquitoes through a translocation event. Promoter analysis revealed a 17.5-fold higher activity (p < .0001) for the SV- carrying fragment than the SV- free one. Quantitative real-time PCR expression profiling of CYP6P9a/b for each SV genotype supported its role as an enhancer because SV+/SV+ homozygote mosquitoes had a significantly greater expression for both genes than heterozygotes SV+/SV- (1.7- to 2-fold) and homozygotes SV-/SV- (4-to 5-fold). Designing a PCR assay revealed a strong association between this SV and pyrethroid resistance (SV+/SV+ vs. SV-/SV-; odds ratio [OR] = 2,079.4, p < .001). The 6.5-kb SV is present at high frequency in southern Africa (80%-100%) but absent in East/Central/West Africa. Experimental hut trials revealed that homozygote SV mosquitoes had a significantly greater chance to survive exposure to pyrethroid-treated nets (OR 27.7; p < .0001) and to blood feed than susceptible mosquitoes. Furthermore, mosquitoes homozygote-resistant at the three loci (SV+/CYP6P9a_R/CYP6P9b_R) exhibited a higher resistance level, leading to a far superior ability to survive exposure to nets than those homozygotes susceptible at the three loci, revealing a strong additive effect. This study highlights the important role of structural variations in the development of insecticide resistance in malaria vectors and their detrimental impact on the effectiveness of pyrethroid-based nets.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , África Oriental , África Austral , África Ocidental , Animais , Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/genética
4.
J Infect Dis ; 220(3): 467-475, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30923819

RESUMO

BACKGROUND: Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. METHODS: The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. RESULTS: A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)-based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. CONCLUSIONS: The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Malária/tratamento farmacológico , Mosquitos Vetores/efeitos dos fármacos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , África , Alelos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Mosquiteiros Tratados com Inseticida/parasitologia , Malária/parasitologia , Controle de Mosquitos/métodos , Moçambique
5.
J Infect Dis ; 217(2): 320-328, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29087484

RESUMO

Accounting for approximately 11% of all malaria cases, the Democratic Republic of the Congo (DRC) is central to malaria elimination efforts. To support vector control interventions in DRC, we characterized the dynamics and impact of insecticide resistance in major malaria vectors in 2015. High Plasmodium infection rates were recorded in Anopheles gambiae and Anopheles funestus, with Plasmodium falciparum predominant over Plasmodium malariae. Both mosquito species exhibited high and multiple resistance to major public health insecticide classes. The extremely high resistance to permethrin and DDT (dichlorodiphenyltrichloroethane) in An. gambiae (low mortalities after 6 hours exposure) is worrisome, and is supported by a reduced insecticidal effect of bed nets against both mosquito species in laboratory tests. Metabolic and target site insensitivity mechanisms are driving this resistance in An. gambiae, but only the former was observed in An. funestus. These findings highlight the urgent need for actions to prolong the effectiveness of insecticide-based interventions in DRC.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Resistência a Inseticidas , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação , Animais , DDT/farmacologia , República Democrática do Congo , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Masculino , Controle de Mosquitos , Permetrina/farmacologia , Sensibilidade e Especificidade
6.
Malar J ; 17(1): 317, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165863

RESUMO

BACKGROUND: Malaria vectors are increasingly developing resistance to insecticides across Africa. The impact of such resistance on the continued effectiveness of insecticide-based interventions remains unclear due to poor characterization of vector populations. This study reports the characterization of malaria vectors at Mibellon, a selected site in Cameroon for experimental hut study, including species composition, Plasmodium infection rate, resistance profiles and mechanisms. METHODS: Indoor resting blood-fed Anopheles mosquitoes were collected from houses at Mibellon in 2017 and forced to lay eggs to generate F1 adult mosquitoes. Insecticides susceptibility bioassays were performed on the F1 adult mosquitoes following the WHO protocol to assess resistance profile to insecticides. The molecular basis of resistance and Plasmodium infection rate were investigated using TaqMan genotyping. RESULTS: Anopheles funestus sensu stricto (s.s.) was predominant in Mibellon (80%) followed by Anopheles gambiae s.s. (20%). High levels of resistance to pyrethroids and organochlorides were observed for both species. Moderate resistance was observed against bendiocarb (carbamate) in both species, but relatively higher in An. gambiae s.s. In contrast, full susceptibility was recorded for the organophosphate malathion. The PBO synergist assays with permethrin and deltamethrin revealed a significant recovery of the susceptibility in Anopheles funestus s.s. population (48.8 to 98.1% mortality and 38.3 to 96.5% mortality, respectively). The DDT/pyrethroid 119F-GSTe2 resistant allele (28.1%) and the dieldrin 296S-RDL resistant (9.7%) were detected in An. funestus s.s. The high pyrethroid/DDT resistance in An. gambiae correlated with the high frequency of 1014F knockdown resistance allele (63.9%). The 1014S-kdr allele was detected at low frequency (1.97%). The Plasmodium infection rate was 20% in An. gambiae, whereas An. funestus exhibited an oocyst rate of 15 and 5% for the sporozoite rate. CONCLUSION: These results highlight the increasing spread of insecticide resistance and the challenges that control programmes face to maintain the continued effectiveness of insecticide-based interventions.


Assuntos
Anopheles/fisiologia , Resistência a Inseticidas/genética , Características de História de Vida , Mosquitos Vetores/fisiologia , Plasmodium/isolamento & purificação , Animais , Anopheles/genética , Anopheles/parasitologia , Camarões , Feminino , Proteínas de Insetos/genética , Inseticidas/farmacologia , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia
7.
PLoS Genet ; 11(10): e1005618, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517127

RESUMO

Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Malária/genética , África , Alelos , Animais , Animais Geneticamente Modificados , Anopheles/patogenicidade , Variação Genética , Haplótipos , Insetos Vetores/genética , Inseticidas/farmacologia , Malária/tratamento farmacológico , Malária/transmissão , Dados de Sequência Molecular , Piretrinas/farmacologia
8.
Mol Ecol ; 25(14): 3436-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135886

RESUMO

Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genomewide transcription profiling, we revealed that metabolic resistance through upregulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most upregulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolize both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolize only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays, we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolize only the pyrethroids. Other upregulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (odds ratio 7.3; P < 0.0001). The detection of multiple haplotypes in single mosquitoes after cloning suggested the duplication of ace-1. A TaqMan genotyping of the N485I in nine countries revealed that the mutation is located only in southern Africa with frequency of 10-15% suggesting its recent occurrence. These findings will help in monitoring the spread and evolution of carbamate resistance and improve the design of effective resistance management strategies to control this malaria vector.


Assuntos
Acetilcolinesterase/genética , Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , África Austral , Animais , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Genes de Insetos , Genótipo , Haplótipos , Insetos Vetores/genética , Inseticidas , Simulação de Acoplamento Molecular , Mutação , Fenilcarbamatos , Piretrinas
9.
Malar J ; 15(1): 565, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876039

RESUMO

BACKGROUND: Knowing the extent and spread of insecticide resistance in malaria vectors is vital to successfully manage insecticide resistance in Africa. This information in the main malaria vector, Anopheles funestus sensu stricto, is completely lacking in the most populous country in Africa, Nigeria. This study reports the insecticide susceptibility status and the molecular basis of resistance of An. funestus as well as its involvement in malaria transmission in Akaka-Remo, a farm settlement village in southwest Nigeria. RESULTS: Plasmodium infection analysis using TaqMan protocol coupled with a nested PCR revealed an infection rate of 8% in An. funestus s.s. from Akaka-Remo. WHO susceptibility tests showed this species has developed multiple resistance to insecticides in the study area. Anopheles funestus s.s. population in Akaka-Remo is highly resistant to organochlorines: dieldrin (8%) and DDT (10%). Resistance was also observed against pyrethroids: permethrin (68%) and deltamethrin (87%), and the carbamate bendiocarb (84%). Mortality rate with DDT slightly increased (from 10 to 30%, n = 45) after PBO pre-exposure indicating that cytochrome P450s play little role in DDT resistance while high mortalities were recorded after PBO pre-exposure with permethrin (from 68 to 100%, n = 70) and dieldrin (from 8 to 100%, n = 48) suggesting the implication of P450s in the observed permethrin and dieldrin resistance. High frequencies of resistant allele, 119F in F0 (77%) and F1 (80% in resistant and 72% in susceptible) populations with an odd ratio of 1.56 (P = 0.1859) show that L119F-GSTe2 mutation is almost fixed in the population. Genotyping of the A296S-RDL mutation in both F0 and F1 samples shows an association with dieldrin resistance with an odd ratio of 81 (P < 0.0001) (allelic frequency (R) = 76% for F0; for F1, 90 and 10% were observed in resistant and susceptible populations, respectively) as this mutation is not yet fixed in the population. CONCLUSION: The study reports multiple insecticide resistance in An. funestus from Akaka Remo. It is, therefore, necessary to pay more attention to this major malaria vector for effective malaria control in Nigeria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Plasmodium/isolamento & purificação , Animais , Bioensaio , Dieldrin/farmacologia , Feminino , Frequência do Gene , Genótipo , Proteínas de Insetos/genética , Masculino , Mutação , Nigéria , Permetrina/farmacologia , Fenilcarbamatos/farmacologia , Reação em Cadeia da Polimerase , População Rural , Análise de Sobrevida
10.
Proc Natl Acad Sci U S A ; 110(1): 252-7, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248325

RESUMO

Pyrethroid insecticides are critical for malaria control in Africa. However, resistance to this insecticide class in the malaria vector Anopheles funestus is spreading rapidly across Africa, threatening the success of ongoing and future malaria control programs. The underlying resistance mechanisms driving the spread of this resistance in wild populations remain largely unknown. Here, we show that increased expression of two tandemly duplicated P450 genes, CYP6P9a and CYP6P9b, is the main mechanism driving pyrethroid resistance in Malawi and Mozambique, two southern African countries where this insecticide class forms the mainstay of malaria control. Genome-wide transcription analysis using microarray and quantitative RT-PCR consistently revealed that CYP6P9a and CYP6P9b are the two genes most highly overexpressed (>50-fold; q < 0.01) in permethrin-resistant mosquitoes. Transgenic expression of CYP6P9a and CYP6P9b in Drosophila melanogaster demonstrated that elevated expression of either of these genes confers resistance to both type I (permethrin) and type II (deltamethrin) pyrethroids. Functional characterization of recombinant CYP6P9b confirmed that this protein metabolized both type I (permethrin and bifenthrin) and type II (deltamethrin and Lambda-cyhalothrin) pyrethroids but not DDT. Variability analysis identified that a single allele of each of these genes is predominantly associated with pyrethroid resistance in field populations from both countries, which is suggestive of a single origin of this resistance that has since spread across the region. Urgent resistance management strategies should be implemented in this region to limit a further spread of this resistance and minimize its impact on the success of ongoing malaria control programs.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Medicamentos/genética , Insetos Vetores/genética , Malária/prevenção & controle , Piretrinas , Seleção Genética , Alelos , Animais , Anopheles/enzimologia , Sequência de Bases , Drosophila melanogaster , Insetos Vetores/enzimologia , Malaui , Análise em Microsséries , Dados de Sequência Molecular , Moçambique , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
11.
Proc Natl Acad Sci U S A ; 110(48): 19460-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218582

RESUMO

Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation.


Assuntos
Adaptação Biológica/genética , Afídeos/enzimologia , Repetições de Dinucleotídeos/genética , Amplificação de Genes/genética , Nicotiana/parasitologia , Polimorfismo Genético/genética , Animais , Afídeos/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sequência de Bases , Cromatografia Líquida , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mutação/genética , Nicotina/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
12.
Malar J ; 14: 344, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370361

RESUMO

BACKGROUND: Deciphering the dynamics and evolution of insecticide resistance in malaria vectors is crucial for successful vector control. This study reports an increase of resistance intensity and a rise of multiple insecticide resistance in Anopheles funestus in Malawi leading to reduced bed net efficacy. METHODS: Anopheles funestus group mosquitoes were collected in southern Malawi and the species composition, Plasmodium infection rate, susceptibility to insecticides and molecular bases of the resistance were analysed. RESULTS: Mosquito collection revealed a predominance of An. funestus group mosquitoes with a high hybrid rate (12.2 %) suggesting extensive species hybridization. An. funestus sensu stricto was the main Plasmodium vector (4.8 % infection). Consistently high levels of resistance to pyrethroid and carbamate insecticides were recorded and had increased between 2009 and 2014. Furthermore, the 2014 collection exhibited multiple insecticide resistance, notably to DDT, contrary to 2009. Increased pyrethroid resistance correlates with reduced efficacy of bed nets (<5 % mortality by Olyset(®) net), which can compromise control efforts. This change in resistance dynamics is mirrored by prevalent resistance mechanisms, firstly with increased over-expression of key pyrethroid resistance genes (CYP6Pa/b and CYP6M7) in 2014 and secondly, detection of the A296S-RDL dieldrin resistance mutation for the first time. However, the L119F-GSTe2 and kdr mutations were absent. CONCLUSIONS: Such increased resistance levels and rise of multiple resistance highlight the need to rapidly implement resistance management strategies to preserve the effectiveness of existing insecticide-based control interventions.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos/estatística & dados numéricos , Animais , Anopheles/genética , Feminino , Insetos Vetores/genética , Malária/transmissão , Malaui/epidemiologia , Masculino , Mutação
13.
BMC Genomics ; 15: 817, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25261072

RESUMO

BACKGROUND: Pyrethroid resistance in the major malaria vector Anopheles funestus is rapidly expanding across Southern Africa. It remains unknown whether this resistance has a unique origin with the same molecular basis or is multifactorial. Knowledge of the origin, mechanisms and evolution of resistance are crucial to designing successful resistance management strategies. RESULTS: Here, we established the resistance profile of a Zambian An. funestus population at the northern range of the resistance front. Similar to other Southern African populations, Zambian An. funestus mosquitoes are resistant to pyrethroids and carbamate, but in contrast to populations in Mozambique and Malawi, these insects are also DDT resistant. Genome-wide microarray-based transcriptional profiling and qRT-PCR revealed that the cytochrome P450 gene CYP6M7 is responsible for extending pyrethroid resistance northwards. Indeed, CYP6M7 is more over-expressed in Zambia [fold-change (FC) 37.7; 13.2 for qRT-PCR] than CYP6P9a (FC15.6; 8.9 for qRT-PCR) and CYP6P9b (FC11.9; 6.5 for qRT-PCR), whereas CYP6P9a and CYP6P9b are more highly over-expressed in Malawi and Mozambique. Transgenic expression of CYP6M7 in Drosophila melanogaster coupled with in vitro assays using recombinant enzymes and assessments of kinetic properties demonstrated that CYP6M7 is as efficient as CYP6P9a and CYP6P9b in conferring pyrethroid resistance. Polymorphism patterns demonstrate that these genes are under contrasting selection forces: the exceptionally diverse CYP6M7 likely evolves neutrally, whereas CYP6P9a and CYP6P9b are directionally selected. The higher variability of CYP6P9a and CYP6P9b observed in Zambia supports their lesser role in resistance in this country. CONCLUSION: Pyrethroid resistance in Southern Africa probably has multiple origins under different evolutionary forces, which may necessitate the design of different resistance management strategies.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Malária/parasitologia , Polimorfismo Genético , África , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Anopheles/efeitos dos fármacos , Anopheles/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Feminino , Perfilação da Expressão Gênica , Variação Genética , Genoma , Haplótipos , Inseticidas/toxicidade , Cinética , Piretrinas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
Genes (Basel) ; 13(6)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741864

RESUMO

Leucine-rich repeat proteins and antimicrobial peptides are the key components of the innate immune response to Plasmodium and other microbial pathogens in Anopheles mosquitoes. The APL1 gene of the malaria vector Anopheles funestus has exceptional levels of non-synonymous polymorphism across the range of An. funestus, with an average πn of 0.027 versus a genome-wide average of 0.002, and πn is consistently high in populations across Africa. Elevated APL1 diversity was consistent between the independent pooled-template and target-enrichment datasets, however no link between APL1 diversity and insecticide resistance was observed. Although lacking the diversity of APL1, two further mosquito innate-immunity genes of the gambicin anti-microbial peptide family had πn/πs ratios greater than one, possibly driven by either positive or balancing selection. The cecropin antimicrobial peptides were expressed much more highly than other anti-microbial peptide genes, a result discordant with current models of anti-microbial peptide activity. The observed APL1 diversity likely results from gene conversion between paralogues, as evidenced by shared polymorphisms, overlapping read mappings, and recombination events among paralogues. In conclusion, we hypothesize that higher gene expression of APL1 than its paralogues is correlated with a more open chromatin formation, which enhances gene conversion and elevated diversity at this locus.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Conversão Gênica , Proteínas de Insetos/genética , Malária/genética , Mosquitos Vetores/genética
15.
Genes (Basel) ; 12(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924421

RESUMO

Resistance is threatening the effectiveness of insecticide-based interventions in use for malaria control. Pinpointing genes associated with resistance is crucial for evidence-based resistance management targeting the major malaria vectors. Here, a combination of RNA-seq based genome-wide transcriptional analysis and RNA-silencing in vivo functional validation were used to identify key insecticide resistance genes associated with DDT and DDT/permethrin cross-resistance across Africa. A cluster of glutathione-S-transferase from epsilon group were found to be overexpressed in resistant populations of Anopheles funestus across Africa including GSTe1 [Cameroon (fold change, FC: 2.54), Ghana (4.20), Malawi (2.51)], GSTe2 [Cameroon (4.47), Ghana (7.52), Malawi (2.13)], GSTe3 [Cameroon (2.49), Uganda (2.60)], GSTe4 in Ghana (3.47), GSTe5 [Ghana (2.94), Malawi (2.26)], GSTe6 [Cameroun (3.0), Ghana (3.11), Malawi (3.07), Uganda (3.78)] and GSTe7 (2.39) in Ghana. Validation of GSTe genes expression profiles by qPCR confirmed that the genes are differentially expressed across Africa with a greater overexpression in DDT-resistant mosquitoes. RNAi-based knock-down analyses supported that five GSTe genes are playing a major role in resistance to pyrethroids (permethrin and deltamethrin) and DDT in An. funestus, with a significant recovery of susceptibility observed when GSTe2, 3, 4, 5 and GSTe6 were silenced. These findings established that GSTe3, 4, 5 and 6 contribute to DDT resistance and should be further characterized to identify their specific genetic variants, to help design DNA-based diagnostic assays, as previously done for the 119F-GSTe2 mutation. This study highlights the role of GSTes in the development of resistance to insecticides in malaria vectors and calls for actions to mitigate this resistance.


Assuntos
Anopheles/genética , Perfilação da Expressão Gênica/métodos , Glutationa Transferase/genética , Resistência a Inseticidas , Malária/transmissão , Animais , DDT/farmacologia , Humanos , Proteínas de Insetos/genética , Mosquitos Vetores/genética , Família Multigênica , Permetrina/farmacologia , Análise de Sequência de RNA , Sequenciamento do Exoma/métodos
16.
Genes (Basel) ; 11(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322524

RESUMO

Increased levels of insecticide resistance in major malaria vectors such as Anopheles funestus threaten the effectiveness of insecticide-based control programmes. Understanding the landscape features impacting the spread of resistance makers is necessary to design suitable resistance management strategies. Here, we examined the influence of the highest mountain in West Africa (Mount Cameroon; 4095 m elevation) on the spread of metabolic and target-site resistance alleles in An. funestus populations. Vector composition varied across the four localities surveyed along the altitudinal cline with major vectors exhibiting high parity rate (80.5%). Plasmodium infection rates ranged from 0.79% (An. melas) to 4.67% (An. funestus). High frequencies of GSTe2R (67-81%) and RdlR (49-90%) resistance alleles were observed in An. funestus throughout the study area, with GSTe2R frequency increasing with altitude, whereas the opposite is observed for RdlR. Patterns of genetic diversity and population structure analyses revealed high levels of polymorphisms with 12 and 16 haplotypes respectively for GSTe2 and Rdl. However, the reduced diversity patterns of resistance allele carriers revealed signatures of positive selection on the two genes across the study area irrespective of the altitude. Despite slight variations associated with the altitude, the spread of resistance alleles suggest that control strategies could be implemented against malaria vectors across mountainous landscapes.


Assuntos
Alelos , Anopheles/genética , Frequência do Gene , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Polimorfismo Genético , Animais , Anopheles/parasitologia , Camarões/epidemiologia , Humanos , Proteínas de Insetos/genética , Malária/epidemiologia , Malária/genética , Malária/transmissão , Plasmodium/genética
17.
Parasit Vectors ; 13(1): 423, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811561

RESUMO

BACKGROUND: Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS: Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS: Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS: The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Bioensaio , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/farmacologia , Dieldrin/farmacologia , Vetores de Doenças , Esterases/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Nigéria , Análise de Sequência com Séries de Oligonucleotídeos , Permetrina/farmacologia , Tripsina/genética , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
18.
Genes (Basel) ; 11(4)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331386

RESUMO

The Nigerian Government is scaling up the distribution of insecticide-treated bed nets for malaria control, but the lack of surveillance data, especially in the Sudan/Sahel region of the country, may hinder targeting priority populations. Here, the vectorial role and insecticide resistance profile of a population of a major malaria vector Anopheles funestus sensu stricto from Sahel of Nigeria was characterised. An. funestus s.s. was the only vector found, with a high human blood index (100%) and a biting rate of 5.3/person/night. High Plasmodium falciparum infection was discovered (sporozoite rate = 54.55%). The population is resistant to permethrin (mortality = 48.30%, LT50 = 65.76 min), deltamethrin, DDT (dichlorodiphenyltrichloroethane) and bendiocarb, with mortalities of 29.44%, 56.34% and 54.05%, respectively. Cone-bioassays established loss of efficacy of the pyrethroid-only long-lasting insecticidal nets (LLINs); but 100% recovery of susceptibility was obtained for piperonylbutoxide (PBO)-containing PermaNet®3.0. Synergist bioassays with PBO and diethyl maleate recovered susceptibility, implicating CYP450s (permethrin mortality = 78.73%, χ2 = 22.33, P < 0.0001) and GSTs (DDT mortality = 81.44%, χ2 = 19.12, P < 0.0001). A high frequency of 119F GSTe2 mutation (0.84) was observed (OR = 16, χ2 = 3.40, P = 0.05), suggesting the preeminent role of metabolic resistance. These findings highlight challenges associated with deployment of LLINs and indoor residual spraying (IRS) in Nigeria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Plasmodium/isolamento & purificação , Animais , Feminino , Interações Hospedeiro-Parasita , Malária/epidemiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Nigéria/epidemiologia
19.
Genes (Basel) ; 11(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013227

RESUMO

Growing insecticide resistance in malaria vectors is threatening the effectiveness of insecticide-based interventions, including Long Lasting Insecticidal Nets (LLINs). However, the impact of metabolic resistance on the effectiveness of these tools remains poorly characterized. Using experimental hut trials and genotyping of a glutathione S-transferase resistance marker (L119F-GSTe2), we established that GST-mediated resistance is reducing the efficacy of LLINs against Anopheles funestus. Hut trials performed in Cameroon revealed that Piperonyl butoxide (PBO)-based nets induced a significantly higher mortality against pyrethroid resistant An. funestus than pyrethroid-only nets. Blood feeding rate and deterrence were significantly higher in all LLINs than control. Genotyping the L119F-GSTe2 mutation revealed that, for permethrin-based nets, 119F-GSTe2 resistant mosquitoes have a greater ability to blood feed than susceptible while the opposite effect is observed for deltamethrin-based nets. For Olyset Plus, a significant association with exophily was observed in resistant mosquitoes (OR = 11.7; p < 0.01). Furthermore, GSTe2-resistant mosquitoes (cone assays) significantly survived with PermaNet 2.0 (OR = 2.1; p < 0.01) and PermaNet 3.0 (side) (OR = 30.1; p < 0.001) but not for Olyset Plus. This study shows that the efficacy of PBO-based nets (e.g., blood feeding inhibition) against pyrethroid resistant malaria vectors could be impacted by other mechanisms including GST-mediated metabolic resistance not affected by the synergistic action of PBO. Mosaic LLINs incorporating a GST inhibitor (diethyl maleate) could help improve their efficacy in areas of GST-mediated resistance.


Assuntos
Anopheles/efeitos dos fármacos , Glutationa Transferase/genética , Resistência a Inseticidas/efeitos dos fármacos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/genética , Camarões , Proteínas de Insetos/genética , Mosquiteiros Tratados com Inseticida/parasitologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética
20.
Nat Commun ; 10(1): 4652, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604938

RESUMO

Elucidating the genetic basis of metabolic resistance to insecticides in malaria vectors is crucial to prolonging the effectiveness of insecticide-based control tools including long lasting insecticidal nets (LLINs). Here, we show that cis-regulatory variants of the cytochrome P450 gene, CYP6P9b, are associated with pyrethroid resistance in the African malaria vector Anopheles funestus. A DNA-based assay is designed to track this resistance that occurs near fixation in southern Africa but not in West/Central Africa. Applying this assay we demonstrate, using semi-field experimental huts, that CYP6P9b-mediated resistance associates with reduced effectiveness of LLINs. Furthermore, we establish that CYP6P9b combines with another P450, CYP6P9a, to additively exacerbate the reduced efficacy of insecticide-treated nets. Double homozygote resistant mosquitoes (RR/RR) significantly survive exposure to insecticide-treated nets and successfully blood feed more than other genotypes. This study provides tools to track and assess the impact of multi-gene driven metabolic resistance to pyrethroids, helping improve resistance management.


Assuntos
Anopheles/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Mosquiteiros Tratados com Inseticida , Piretrinas/farmacologia , África , Animais , Anopheles/genética , Sistema Enzimático do Citocromo P-450/fisiologia , Perfilação da Expressão Gênica , Genótipo , Proteínas de Insetos/fisiologia , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA