Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Curr Opin Oncol ; 34(6): 705-712, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093876

RESUMO

PURPOSE OF REVIEW: Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS: Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY: Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.


Assuntos
Ácidos Nucleicos Livres , Glioma , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Glioma/diagnóstico , Humanos , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , RNA não Traduzido
2.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742991

RESUMO

The opening of the ATP-sensitive mitochondrial potassium channel (mitok-ATP) is a common goal of cardioprotective strategies in the setting of acute and chronic myocardial disease. The biologically active thyroid hormone (TH), 3-5-3-triiodothyronine (T3), has been indicated as a potential activator of mitoK-ATP but the underlying mechanisms are still elusive. Here we describe a novel role of T3 in the transcriptional regulation of mitoK and mitoSur, the recently identified molecular constituents of the channel. To mimic human ischemic heart damage, we used a rat model of a low T3 state as the outcome of a myocardial ischemia/reperfusion event, and neonatal rat cardiomyocytes (NRCM) challenged with hypoxia or H2O2. Either in the in vivo or in vitro models, T3 administration to recover the physiological concentrations was able to restore the expression level of both the channel subunits, which were found to be downregulated under the stress conditions. Furthermore, the T3-mediated transcriptional activation of mitoK-ATP in the myocardium and NRCM was associated with the repression of the TH-inactivating enzyme, deiodinase 3 (Dio3), and an up-regulation of the T3-responsive miR-133a-3p. Mechanistically, the loss and gain of function experiments and reporter gene assays performed in NRCM, have revealed a new regulatory axis whereby the silencing of Dio3 under the control of miR-133a-3p drives the T3-dependent modulation of cardiac mitoK and mitoSur transcription.


Assuntos
MicroRNAs , Mitocôndrias Cardíacas , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Ratos , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
3.
Pharmacogenomics J ; 19(5): 455-464, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30686821

RESUMO

Biomarkers able to improve the cost/benefit ratio are urgently needed for metastatic colorectal cancer patients that are eligible to receive regorafenib. Here, we measured plasma levels of ten circulating microRNAs (c-miRNAs) and we investigated their early changes during treatment, as well as possible correlation with clinical outcome. Ten literature-selected c-miRNAs were quantified by qRT-PCR on plasma samples collected at baseline (d1) and after 15 days of treatment (d15). C-miRNAs showing significant changes were further analyzed to establish correlations with outcome. A decision tree-based approach was employed to define a c-miRNA signature able to predict the outcome. Results achieved in an exploratory cohort were tested in a validation group. In the exploratory cohort (n = 34), the levels of c-miR-21 (p = 0.06), c-miR-141 (p = 0.04), and c-miR-601 (p = 0.01) increased at d15 compared with d1. A c-miRNA signature involving c-miR-21, c-miR-221, and c-miR-760 predicted response to treatment (p < 0.0001) and was significantly associated to PFS (HR = 10.68; 95% CI 3.2-35.65; p < 0.0001). In the validation cohort (n = 36), the increase in c-miR-21 (p = 0.02) and c-miR-601 (p = 0.02) levels at d15 was confirmed, but the associations with outcome were not. Our data indicate that early changes of c-miRNA levels might be influenced by regorafenib treatment. However, further studies are needed to establish the predictive power of such modifications.


Assuntos
MicroRNA Circulante/sangue , Neoplasias Colorretais/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Metástase Neoplásica
4.
RNA Biol ; 16(7): 865-878, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30929607

RESUMO

Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.


Assuntos
MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Software , Humanos , MicroRNAs/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
5.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703747

RESUMO

On the grounds that miRNAs present in the blood of prostate cancer (PCa) patients are released in the growth medium by PCa cells, it is conceivable that PCa cells resistant to docetaxel (DCT) (DCTR) will release miRNAs that may be found in PCa patients under DCT therapy if resistant PCa cells appear. We isolated DCTR clones respectively from 22Rv1 and DU-145 PCa cell lines and performed through next-generation sequencing (NGS) the miRNAs profiles of the released miRNAs. The analysis of the NGS data identified 105 and 1 miRNAs which were differentially released in the growth medium of the 22Rv1/DCTR and DU-145/DCTR clones, respectively. Using additional filters, we selected 12 and 1 miRNA more released by all 22Rv1/DCTR and DU-145/DCTR clones, respectively. Moreover, we showed that 6 of them were more represented in the growth medium of the DCTR cells than the ones of DCT-treated cells. We speculated that they have the pre-requisite to be tested as predictive biomarkers of the DCT resistance in PCa patients under DCT therapy. We propose the utilization of clones resistant to a given drug as in vitro model to identify the differentially released miRNAs, which in perspective could be tested as predictive biomarkers of drug resistance in tumor patients under therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Modelos Biológicos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Taxoides/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Clonais , Docetaxel , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia , Taxoides/farmacologia
6.
Biomedicines ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672077

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs that act as master regulators of gene expression, fine-tuning the activity of thousands of genes in our cells, by modulating gene expression at the post-transcriptional level [...].

7.
JHLT Open ; 3: None, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357297

RESUMO

Background: Ventricular assist device (VAD) implant represents a therapeutic option for pediatric patients with end-stage heart failure (HF). Heart unloading by VAD can modify several molecular pathways underlying cardiac function in HF. Among them, the potential role of microRNA (miRNAs) in response to VAD implant is emerging. This study was aimed at investigating in HF pediatric patients the effect of VAD-modified miRNAs on the adiponectin (ADPN) system, known to exert cardioprotective actions. Methods: ADPN was measured in plasma samples obtained from HF children, before and 1 month after VAD implant, and from healthy control children. miRNA profile and molecules belonging to ADPN system were determined in cardiac biopsies collected at the time of VAD implantation (pre-VAD) and at the moment of heart transplant (post-VAD). An in vitro study using HL-1 cell line was performed to verify the regulatory role of the VAD-modified miRNA on the ADPN system. Results: VAD implant did not affect circulating and cardiac levels of ADPN, but increased the cardiac mRNA expression of ADPN receptors, including AdipoR1, AdipoR2, and T-cad. AdipoR2 and T-cad were inversely related to the VAD-modified miRNA levels. The in vitro study confirmed the regulatory role of miR-1246 and miR-199b-5p on AdipoR2, and of miR-199b-5p on T-cad. Conclusions: These data suggest that VAD treatment could regulate the expression of the cardioprotective ADPN system by epigenetic mediators, suggesting that miRNAs have a potential role as therapeutic targets to improve cardiac function in HF pediatric patients.

8.
J Mol Cell Cardiol ; 60: 84-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23583740

RESUMO

Somatic mutations and dysregulation by microRNAs (miRNAs) may have a pivotal role in the Congenital Heart Defects (CHDs). The purpose of the study was to assess both somatic and germline mutations in the GATA4 and NKX2.5 genes as well as to identify 3'UTR single nucleotide polymorphisms (SNPs) in the miRNA target sites. We enrolled 30 patients (13 males; 13.4±8.3 years) with non-syndromic CHD. GATA4 and NKX2.5 genes were screened in cardiac tissue of sporadic and in blood samples of familial cases. Computational methods were used to detect putative miRNAs in the 3'UTR region and to assess the Minimum Free Energy of hybridization (MFE, kcal/mol). Difference of MFEs (ΔMFE) ≥4 kcal/mol between alleles was considered biologically relevant on miRNA binding. The sum of all ΔMFEs (|ΔMFEtot|=∑|ΔMFE|) was calculated in order to predict the biological importance of SNPs binding more miRNAs. No evidence of novel GATA4 and NKX2.5 mutations was found both in sporadic and familial patients. Bioinformatic analysis revealed 27 putative miRNAs binding to identified SNPs in the 3'UTR of GATA4. ΔMFE ≥4 kcal/mol between alleles was obtained for the +354A>C (miR-4299), +587A>G (miR-604), +1355G>A (miR-548v, miR-139-5p) and +1521C>G (miR-583, miR-3125, miR-3928) SNPs. The +1521C>G SNP showed the highest ΔMFEtot (21.66 kcal/mol). Luciferase reporter assays indicated that miR-583 was dose-dependently effective in regulating +1521 C allele compared with +1521 G allele. Based on the analysis of 100 CHD cases and 204 healthy newborns, the +1521 G allele was also associated with a lower risk of CHD (OR=0.5, 95% CI 0.3-0.9, p=0.03), likely due to the relatively low binding of the miRNA and high levels of protein. These results suggest that common SNPs in the 3'UTR of GATA4 alter miRNA gene regulation contributing to the pathogenesis of CHDs.


Assuntos
Fator de Transcrição GATA4 , Regulação da Expressão Gênica , Mutação em Linhagem Germinativa , Cardiopatias Congênitas , MicroRNAs , Proteínas Nucleares , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição , Regiões 3' não Traduzidas , Adolescente , Adulto , Linhagem Celular , Criança , Pré-Escolar , Feminino , Fator de Transcrição GATA4/biossíntese , Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
9.
J Cell Mol Med ; 17(8): 1006-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23802567

RESUMO

Endothelial cells growing in high glucose-containing medium show reduced cell proliferation and in vitro angiogenesis. Evidence suggests that the molecular pathways leading to these cellular responses are controlled by microRNAs, endogenous post-transcriptional regulators of gene expression. To identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression was able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind mRNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors. Taken together, the data indicate that miR-492 exerts a potent anti-angiogenic activity in endothelial cells and therefore miR-492 seems a promising tool for anti-angiogenic therapy.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Regiões 3' não Traduzidas/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Ensaios Enzimáticos , Regulação da Expressão Gênica , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Luciferases/metabolismo , MicroRNAs/genética , Neovascularização Patológica/patologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ligação Proteica/genética , Fator de Transcrição Sp1/metabolismo , Transfecção
10.
Mol Cancer ; 12(1): 52, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23734815

RESUMO

BACKGROUND: Circulating microRNAs (miRNAs) have been found in many body fluids and represent reliable markers of several physio-pathological disorders, including cancer. In some cases, circulating miRNAs have been evaluated as markers of the efficacy of anticancer treatment but it is not yet clear if miRNAs are actively released by tumor cells or derive from dead tumor cells. RESULTS: We showed that a set of prostate cancer secretory miRNAs (PCS-miRNAs) were spontaneously released in the growth medium by DU-145 prostate cancer cells and that the release was greater after treatment with the cytotoxic drug fludarabine. We also found that the miRNAs were associated with exosomes, implying an active mechanism of miRNA release. It should be noted that in fludarabine treated cells the release of miR-485-3p, as well as its association with exosomes, was reduced suggesting that miR-485-3p was retained by surviving cells. Monitoring the intracellular level of miR-485-3p in these cells, we found that miR-485-3p was stably up regulated for several days after treatment. As a possible mechanism we suggest that fludarabine selected cells that harbor high levels of miR-485-3p, which in turn regulates the transcriptional repressor nuclear factor-Y triggering the transcription of topoisomerase IIα, multidrug resistance gene 1 and cyclin B2 pro-survival genes. CONCLUSIONS: Cytotoxic treatment of DU-145 cells enhanced the release of PCS-miRNAs with the exception of miR-485-3p which was retained by surviving cells. We speculate that the retention of miR-485-3p was a side effect of fludarabine treatment in that the high intracellular level of miR-485-3p plays a role in the sensitivity to fludarabine.


Assuntos
Antineoplásicos/farmacologia , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Vidarabina/análogos & derivados , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Vidarabina/farmacologia
11.
Cell Death Discov ; 9(1): 445, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065937

RESUMO

Docetaxel (DCT) resistance is one of the main factors responsible for treatment failure in metastatic prostate cancer (PCa). Although several mechanisms of DCT resistance have been elucidated, the issue is still far from comprehensive. In this work we show that miR-96-5p, miR-183-5p and miR-210-3p (referred to as sDCTR-miRNAs) are specifically released by DCT resistant (DCTR) PCa clones and decrease the efficacy of DCT in PCa cells when overexpressed. Through bioinformatic analysis, we identified several potential targets of sDCTR-miRNAs' activity including FOXO1, IGFBP3, and PDCD4 known to exert a role in DCT resistance. Additionally, we found that PPP2CB and INSIG1 mediated the ability of sDCTR-miRNAs to reduce the efficacy of DCT. We explored whether secreted sDCTR-miRNAs could affect the phenotype of PCa cells. We found that exposure to exosomes derived from DCTR PCa clones (in which the content of sDCTR-miRNAs was higher than in exosomes from parental cells), as well as exposure to exosome loaded with sDCTR-miRNAs, reduced the cytotoxicity of DCT in PCa cells sensitive to the drug. Finally, we validated circulating miR-183-5p and miR-21-5p as potential predictive biomarkers of DCT resistance in PCa patients. Our study suggests a horizontal transfer mechanism mediated by exosomal miRNAs that contributes to reduce docetaxel sensitivity and highlights the relevance of cell-to-cell communication in drug resistance.

12.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765859

RESUMO

BACKGROUND: The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. METHODS: Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). RESULTS: Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. CONCLUSION: We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.

13.
ACS Omega ; 7(27): 23127-23137, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847267

RESUMO

Microglial cells are a component of the innate immune system in the brain that support cell-to-cell communication via secreted molecules and extracellular vesicles (EVs). EVs can be divided into two major populations: large (LEVs) and small (SEVs) EVs, carrying different mediators, such as proteins, lipids, and miRNAs. The microglia EVs cargo crucially reflects the status of parental cells and can lead to both beneficial and detrimental effects in many physiopathological states. Herein, a workflow for the extraction and characterization of SEVs and LEVs from human C20 and HMC3 microglia cell lines derived, respectively, from adult and embryonic microglia is reported. EVs were gathered from the culture media of the two cell lines by sequential ultracentrifugation steps and their biochemical and biophysical properties were analyzed by Western blot, transmission electron microscopy, and dynamic light scattering. Although the C20- and HMC3-derived EVs shared several common features, C20-derived EVs were slightly lower in number and more polydispersed. Interestingly, C20- but not HMC3-SEVs were able to interfere with the proliferation of U87 glioblastoma cells. This correlated with the different relative levels of eight miRNAs involved in neuroinflammation and tumor progression in the C20- and HMC3-derived EVs, which in turn reflected a different basal activation state of the two cell types. Our data fill a gap in the community of microglia EVs, in which the preparations from human cells have been poorly characterized so far. Furthermore, these results shed light on both the differences and similarities of EVs extracted from different human microglia cell models, underlining the need to better characterize the features and biological effects of EVs for therein useful and correct application.

14.
Int J Pharm ; 627: 122195, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36115466

RESUMO

Melatonin (MEL) is a pleiotropic neurohormone of increasing interest as a neuroprotective agent in ocular diseases. Improving the mucoadhesiveness is a proposed strategy to increase the bioavailability of topical formulations. Herein, the design and optimization of MEL-loaded lipid-polymer hybrid nanoparticles (mel-LPHNs) using Design of Experiment (DoE) was performed. LPHNs consisted of PLGA-PEG polymer nanoparticles coated with a cationic lipid-shell. The optimized nanomedicine showed suitable size for ophthalmic administration (189.4 nm; PDI 0.260) with a positive surface charge (+39.8 mV), high encapsulation efficiency (79.8 %), suitable pH and osmolarity values, good mucoadhesive properties and a controlled release profile. Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy confirmed the encapsulation of melatonin in the systems and the interaction between lipids and polymer matrix. Biological evaluation in an in vitro model of diabetic retinopathy demonstrated enhanced neuroprotective and antioxidant activities of mel-LPHNs, compared to melatonin aqueous solution at the same concentration (0.1 and 1 µM). A modified Draize test was performed to assess the ocular tolerability of the formulation showing no signs of irritation. To the best our knowledge, this study reported for the first time the development of mel-LPHNs, a novel and safe hybrid platform suitable for the topical management of retinal diseases.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Melatonina , Nanopartículas , Fármacos Neuroprotetores , Humanos , Nanomedicina , Melatonina/química , Preparações de Ação Retardada , Antioxidantes/farmacologia , Retinopatia Diabética/tratamento farmacológico , Nanopartículas/química , Polímeros/química , Lipídeos/química , Tamanho da Partícula , Portadores de Fármacos/química
15.
Physiol Genomics ; 43(20): 1153-9, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21846807

RESUMO

The prosenescence role of miR-290 and nocodazole has been documented in primary mouse embryo fibroblasts (MEF), while it is not clear whether immortal murine fibroblasts are still responsive to these senescence inducing stimuli. To establish this point, immortal murine fibroblasts with functional (NIH3T3) or nonfunctional p53 (I-MEF) and low levels of miR-290 were tested for their capability to undergo senescence after exposure to either nocodazole or miR-290. Our results clearly indicate that nocodazole induces senescence only in NIH3T3 cells with a functional p53 but not in I-MEF lacking a functional p53. miR-290 overexpression is unable to address any of the tested immortalized clones toward senescence, regardless of the p53 status, suggesting that the prosenescence role of miR-290 is specific for primary but not for immortal murine fibroblasts. Moreover our findings suggest that the mere downregulation of a potential tumor suppressor miRNA in a given cell type does not necessarily imply that it behaves as a tumor suppressor.


Assuntos
Senescência Celular/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Transformada , Senescência Celular/efeitos dos fármacos , Células Clonais , Fibroblastos/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Nocodazol/farmacologia , Transfecção
16.
J Biol Chem ; 285(50): 39551-63, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20923760

RESUMO

Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G(2) cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3'-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis.


Assuntos
Processamento Alternativo , Apoptose , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Senescência Celular , Células HEK293 , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Processamento de Serina-Arginina
17.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188481, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217485

RESUMO

One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.


Assuntos
Antineoplásicos/uso terapêutico , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/efeitos adversos , Docetaxel/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Taxoides/efeitos adversos , Taxoides/uso terapêutico
18.
Cell Adh Migr ; 15(1): 180-201, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34157951

RESUMO

MiRNAs represent a mechanism that regulates gene expression in many pathological conditions. Exosomes are known to be secreted from all types of cells, and the exosomes-released molecules are crucial messengers that can regulate cellular processes. We investigated the miRNAs content of exosomes released by cancer cells during the invasion . An invasion stimulus has been generated through scratches created on the confluent cells of cancer cell lines: glioblastoma, breast and prostate cancers.Several miRNAs were found to be significantly differentially abundant during the cell invasion , both in common among different cell lines and exclusive. Understanding the language codes among cells involved in invasion can lead to the development of therapies that can inhibit cellular communication, slowing or eventually stopping their activity.


Assuntos
Neoplasias da Mama/genética , Exossomos/genética , Glioblastoma/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino
19.
Methods Mol Biol ; 2265: 487-512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704736

RESUMO

MicroRNAs (miRNAs) can regulate the expression of potentially every transcript in the cell, and the definition of miRNA-target interactions is crucial to understand their role in all biological processes. However, the identification of the miRNAs that target a specific mRNA remains a challenge. Here, we describe an innovative method called miR-CATCHv2.0 for the high-throughput identification of the miRNA species bound to an RNA of interest. We also describe how this method can overcome the limitations of the current computational and experimental methods available in this field.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Melanoma , MicroRNAs , RNA Mensageiro , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Melanoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Biomedicines ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680526

RESUMO

Ventricular Assist Device (VAD) therapy is considered as a part of standard care for end-stage Heart Failure (HF) children unresponsive to medical management, but the potential role of miRNAs in response to VAD therapy on molecular pathways underlying LV remodeling and cardiac function in HF is unknown. The aims of this study were to evaluate the effects of VAD on miRNA expression profile in cardiac tissue obtained from HF children, to determine the putative miRNA targets by an in-silico analysis as well as to verify the changes of predicated miRNA target in the same cardiac samples. The regulatory role of selected miRNAs on predicted targets was evaluated by a dedicated in vitro study. miRNA profile was determined in cardiac samples obtained from 13 HF children [median: 29 months; 19 LVEF%; 9 Kg] by NGS before VAD implant (pre-VAD) and at the moment of heart transplant (Post-VAD). Only hsa-miR-199b-5p, hsa-miR-19a-3p, hsa-miR-1246 were differentially expressed at post-VAD when compared to pre-VAD, and validated by real-time PCR. Putative targets of the selected miRNAs were involved in regulation of sarcomere genes, such as cardiac troponin (cTns) complex. The expression levels of fetal ad adult isoforms of cTns resulted significantly higher after VAD in cardiac tissue of HF pediatric patients when compared with HF adults. An in vitro study confirmed a down-regulatory effect of hsa-miR-19a-3p on cTnC expression. The effect of VAD on sarcomere organization through cTn isoform expression may be epigenetically regulated, suggesting for miRNAs a potential role as therapeutic targets to improve heart function in HF pediatric patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA