Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643622

RESUMO

Pit recharge systems (PRS) control odor by managing organic solids in swine manure. However, there needs to be more understanding of PRS's effect on the microbiome composition and its impact on odor formation. A study was conducted to understand how recharge intervals used in PRS impact manure microbiome and odor formation. Bioreactors dynamically loaded simulated recharge intervals of 14, 10, and 4 days by diluting swine manure with lagoon effluent at varying ratios. Treatment ratios tested included 10:0 (control), 7:3 (typical Korean PRS), 5:5 (enhanced PRS #1), and 2:8 (enhanced PRS #2). Manure microbial membership, chemical concentrations, and odorant concentrations were used to identify the interactions between microbiota, manure, and odor. The initial microbial community structure was controlled by dilution ratio and manure barn source material. Firmicutes and Proteobacteria were the dominant microbial phyla in manure and lagoon effluent, respectively, and significantly decreased or increased with dilution. Key microbial species were Clostridium saudiense in manure and Pseudomonas caeni in lagoon effluent. Percentages of these species declined by 8.9% or increased by 17.6%, respectively, with each unit dilution. Microbial community composition was controlled by both treatment (i.e., manure dilution ratio and barn source material) and environmental factors (i.e., solids and pH). Microbiome composition was correlated with manure odor formation profiles, but this effect was inseparable from environmental factors, which explained over 75% of the variance in odor profiles. Consequently, monitoring solids and pH in recharge waters will significantly impact odor control in PRS.


Assuntos
Esterco , Microbiota , Odorantes , Esterco/microbiologia , Animais , Odorantes/análise , Suínos , Reatores Biológicos/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-29381414

RESUMO

In-house windrowing between flocks is an emerging sanitary management practice to partially disinfect the built-up litter in broiler houses. However, this practice may also increase ammonia (NH3) emission from the litter due to the increase in litter temperature. The objectives of this study were to develop mathematical models to estimate NH3 emission rates from broiler houses practicing in-house windrowing between flocks. Equations to estimate mass-transfer areas form different shapes windrowed litter (triangular, rectangular, and semi-cylindrical prisms) were developed. Using these equations, the heights of windrows yielding the smallest mass-transfer area were estimated. Smaller mass-transfer area is preferred as it reduces both emission rates and heat loss. The heights yielding the minimum mass-transfer area were 0.8 and 0.5 m for triangular and rectangular windrows, respectively. Only one height (0.6 m) was theoretically possible for semi-cylindrical windrows because the base and the height were not independent. Mass-transfer areas were integrated with published process-based mathematical models to estimate the total house NH3 emission rates during in-house windrowing of poultry litter. The NH3 emission rate change calculated from the integrated model compared well with the observed values except for the very high NH3 initial emission rate from mechanically disturbing the litter to form the windrows. This approach can be used to conveniently estimate broiler house NH3 emission rates during in-house windrowing between flocks by simply measuring litter temperatures.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Amônia/análise , Amônia/metabolismo , Abrigo para Animais , Modelos Teóricos , Aves Domésticas , Animais , Animais Domésticos , Galinhas , Resíduos Sólidos , Estatística como Assunto , Temperatura
3.
J Environ Qual ; 46(3): 498-504, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28724100

RESUMO

An emerging poultry manure management practice is in-house windrowing to disinfect the litter. However, this practice is likely to increase emissions of ammonia (NH) and nitrous oxide (NO) from the windrowed litter. The objective of this study was to quantitatively compare NH and NO emissions from broiler houses with and without in-house windrowing. Two broiler houses at a commercial farm were used to compare the NH and NO emissions. Gas emission measurements were conducted continuously and simultaneously for both the control house (without windrowing) and the house with windrowing during the same production periods. The house emission rates were calculated by multiplying the hourly mean gas concentrations and the ventilation rates. The windrowed litter temperature was significantly higher than that of the control litter. The impact of downtime (the time lapse between flocks, during which the bird house is empty) windrowing litter on pathogen reduction was inconclusive because of very low or no recovery of both and spp. from control or windrowed litter samples, respectively. The windrowing house NH emissions were 26.2 and 16.6 kg d house, whereas for the control house, they were 14.6 and 12.8 kg d house in 2012 and 2013, respectively. The NO emissions from the windrowing house were also higher than those from the control house. The total NH and NO emissions from broiler houses practicing windrowing litter management were estimated to be 35.0 and 4.43 g bird, respectively, compared with 31.9 and 3.89 g bird for the control house, respectively.


Assuntos
Amônia/análise , Abrigo para Animais , Óxido Nitroso/análise , Animais , Galinhas , Esterco
4.
Environ Sci Technol ; 50(24): 13274-13282, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993069

RESUMO

This study investigated the sorption potential of hydrochars, produced from hydrothermally carbonizing livestock wastes, toward organic pollutants (OPs) with a wide range of hydrophobicity, and compared their sorption capacity with that of pyrochars obtained from conventional dry pyrolysis from the same feedstock. Results of SEM, Raman, and 13C NMR demonstrated that organic carbon (OC) of hydrochars mainly consisted of amorphous alkyl and aryl C. Hydrochars exhibited consistently higher log Koc of both nonpolar and polar OPs than pyrochars. This, combined with the significantly less energy required for the hydrothermal process, suggests that hydrothermal conversion of surplus livestock waste into value-added sorbents could be an alternative manure management strategy. Moreover, the hydrochars log Koc values were practically unchanged after the removal of amorphous aromatics, implying that amorphous aromatic C played a comparable role in the high sorption capacity of hydrochars compared to amorphous alkyl C. It was thus concluded that the dominant amorphous C associated with both alkyl and aryl moieties within hydrochars explained their high sorption capacity for OPs. This research not only indicates that animal-manure-derived hydrochars are promising sorbents for environmental applications but casts new light on mechanisms underlying the high sorption capacity of hydrochars for both nonpolar and polar OPs.


Assuntos
Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Adsorção
5.
J Air Waste Manag Assoc ; 65(4): 395-403, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25947209

RESUMO

UNLABELLED: Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. IMPLICATIONS: The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas emission with two downwind vertical concentration planes surrounding the lagoon.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Metano/química , Eliminação de Resíduos Líquidos/métodos , Irrigação Agrícola , Animais , Mapeamento Geográfico , Incerteza , Estados Unidos , Vento
6.
J Environ Qual ; 43(4): 1111-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603059

RESUMO

This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of measuring gas emission rates from a lagoon environment using the backward Lagrangian stochastic (bLS) inverse-dispersion technique. Path-integrated concentrations (PICs) and three-dimensional (3D) wind vector data were collected at different locations within the lagoon landscape. A floating 45 m × 45 m perforated pipe network on an irrigation pond was used as a synthetic distributed emission source for the controlled release of methane. A total of 961 15-min datasets were collected under different atmospheric stability conditions over a 2-yr period. The PIC location had a significant impact on the accuracy of the bLS technique. The location of the 3D sonic anemometer was generally not a factor for the measured accuracies with the PIC positioned on the downwind berm. The PICs across the middle of the pond consistently produced the lowest accuracy with any of the 3D anemometer locations (<69% accuracy). The PICs located on the downwind berm consistently yielded the best bLS accuracy regardless of whether the 3D sonic anemometer was located on the upwind, side, or downwind berm (accuracies ranged from 79 to 108%). The accuracies of the emission measurements with the berm PIC-berm 3D setting were statistically similar to that found in a more ideal homogeneous grass field. Considering the practical difficulties of setting up equipment and the accuracies associated with various sensor locations, we recommend that wind and concentration sensors be located on the downwind berm.

7.
J Hazard Mater ; 471: 134346, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653139

RESUMO

Soil, particularly in agricultural regions, has been recognized as one of the significant reservoirs for the emerging contaminant of MPs. Therefore, developing a rapid and efficient method is critical for their identification in soil. Here, we coupled HSI systems [i.e., VNIR (400-1000 nm), InGaAs (800-1600 nm), and MCT (1000-2500 nm)] with machine learning algorithms to distinguish soils spiked with white PE and PA (average size of 50 and 300 µm, respectively). The soil-normalized SWIR spectra unveiled significant spectral differences not only between control soil and pure MPs (i.e., PE 100% and PA 100%) but also among five soil-MPs mixtures (i.e., PE 1.6%, PE 6.9%, PA 5.0%, and PA 11.3%). This was primarily attributable to the 1st-3rd overtones and combination bands of C-H groups in MPs. Feature reductions visually demonstrated the separability of seven sample types by SWIR and the inseparability of five soil-MPs mixtures by VNIR. The detection models achieved higher accuracies using InGaAs (92-100%) and MCT (97-100%) compared to VNIR (44-87%), classifying 7 sample types. Our study indicated the feasibility of InGaAs and MCT HSI systems in detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soil. SYNOPSIS: One of two SWIR HSI systems (i.e., InGaAs and MCT) with a sample imaging surface area of 3.6 mm² per grid cell was sufficient for detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soils without the digestion and separation procedures.

8.
ACS Omega ; 8(4): 4234-4243, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743065

RESUMO

Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and -18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at -18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed.

9.
Environ Sci Technol ; 45(13): 5696-703, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21671644

RESUMO

Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass such as wood, with an emphasis on nanostructure generation. There has been little work exploring the carbonization of complex waste streams or of utilizing HTC as a sustainable waste management technique. The objectives of this study were to evaluate the environmental implications associated with the carbonization of representative municipal waste streams (including gas and liquid products), to evaluate the physical, chemical, and thermal properties of the produced hydrochar, and to determine carbonization energetics associated with each waste stream. Results from batch carbonization experiments indicate 49-75% of the initially present carbon is retained within the char, while 20-37% and 2-11% of the carbon is transferred to the liquid- and gas-phases, respectively. The composition of the produced hydrochar suggests both dehydration and decarboxylation occur during carbonization, resulting in structures with high aromaticities. Process energetics suggest feedstock carbonization is exothermic.


Assuntos
Carbono/química , Temperatura Alta , Eliminação de Resíduos/métodos , Água/química , Transição de Fase
10.
J Environ Qual ; 50(2): 336-349, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33415744

RESUMO

Manure management systems have a major impact on odor from swine operations. A study was conducted to compare deep-pit manure management systems to flushing barn manure management systems for odor reduction and organic matter degradation. Bioreactors were used to mimic manure management systems in which manure and lagoon effluent were loaded initially, and subsequent manure was added daily at 5% of its storage capacity (1 L). Final manure-to-lagoon effluent ratios were 10:0 (deep-pit manure management system), 7:3 (Korean flushing systems), 5:5 (enhanced flushing systems), and 2:8 (enhanced flushing systems). At the end of the trial, at 4 (2:8), 10 (5:5), or 14 (10:0, 7:3) d, manure and gas concentrations of odorants were measured, including total solids (TS), total N (TN), and total C (TC) of manure. Odor was evaluated using the odor activity values (OAVs), and regression analysis was used to determine the effects of dilution and TS on manure properties and OAVs. Solids in the manure were positively correlated to TN, TC, straight chain fatty acids (SCFAs), branch chain fatty acids (BCFAs), total phenols, and total indoles and positively correlated to OAV for SCFAs, BCFAs, ammonia, total phenols, and total indoles. Reducing TS by 90% reduced BCFA, ammonia, phenols, and indoles by equal amounts in air. Carbon dioxide was the main C source evolved, averaging over 90%, and CH4 increased with dilution quadratically. Overall, reducing solids in manure by dilution had the biggest impact on reducing odor and increasing organic C degradation.


Assuntos
Esterco , Odorantes , Amônia/análise , Animais , Dióxido de Carbono/análise , Digestão , Suínos
11.
J Hazard Mater ; 408: 124405, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33168317

RESUMO

We assessed the enzymatic activation of four different biochars produced from pyrolyzing swine manure and poultry litter, and by co-pyrolyzing these livestock residues with agricultural spent mulch plastic film wastes (plastichars). Enzymatic activation consisted of incubating biochars in soil inoculated with earthworms (Lumbricus terrestris), which acted as biological vectors to facilitate retention of extracellular enzymes onto biochar surface. The activity of carboxylesterase ‒a pesticide-detoxifying enzyme‒ was measured in non-bioturbed soils (reference), linings of the burrows created by earthworms, casts (feces) and biochar particles recovered from the soil. Our results revealed that: 1) biochar increased soil carboxylesterase activity respect to biochar-free (control) soils, which was more prominent in the presence of earthworms. 2) The maximum enzyme activity was found in soils amended with plastichars. 3) The plastichars showed higher enzyme binding capacities than that of the biochars produced from animal manure alone, corroborating the pattern of enzyme distribution found in soil. 4) The presence of earthworms in soil significantly increased the potential of the plastichars for enzymatic activation. These findings suggest that the plastichars are suitable for increasing and stabilizing soil enzyme activities with no toxicity on earthworms.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Carvão Vegetal , Esterco , Plásticos , Solo , Poluentes do Solo/toxicidade , Suínos
12.
Artigo em Inglês | MEDLINE | ID: mdl-20401775

RESUMO

Increased swine production in North Carolina has resulted in greater waste generation and is demanding some emerging new innovative technologies to effectively treat swine wastewater. One of the cost-effective and passive methods to treat swine wastewater is using constructed wetlands. The objective of this study was to evaluate the N removal under two N loads in 3 different wetland systems: aerated marsh-pond-marsh (M-P-M), aerated marsh-covered pond-marsh (M-FB-M), and continuous marsh (CM) with two days drain and five days flood cycle. Swine wastewater from an anaerobic lagoon was applied to the constructed wetland cells (11 m wide x 40 m length) at two N loading rates of 7 and 12 kg N ha(-1) day(-1)from June to July and August to September 2005, respectively. Weekly inflow and outflow samples were collected for N, P, TS, and COD analysis. Total N reductions (%) at low and high N loading rates were 85.8 and 51.8; 86.3 and 63.3; and 86.2 and 61.8 for M-P-M, M-FB-M, and CM, respectively. Aeration had no significant (P > 0.05) impact on N removal. However, significant (P < 0.05) differences were observed for wetland systems between low and high N loading rates. No difference (P > 0.05) in N reduction was found among wetland systems. Vegetation uptake of N was negligible, ranging from 1.2 to 1.8 %. No significant (P > 0.05) differences in TS and COD removal were observed between the wetland systems.


Assuntos
Suínos , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Áreas Alagadas , Animais , Modelos Teóricos , Nitrogênio/isolamento & purificação
13.
Artigo em Inglês | MEDLINE | ID: mdl-20390880

RESUMO

Oxygen transfer efficiencies of various components of the marsh-pond-marsh (M-P-M) and marsh-floating bed-marsh (M-FB-M) wetlands treating swine wastewater were determined by performing oxygen mass balance around the wetlands. Biological oxygen demand (BOD) and total nitrogen (TN) loading and escaping rates from each wetland were used to calculate carbonaceous and nitrogenous oxygen demands. Ammonia emissions were measured using a wind tunnel. Oxygen transfer efficiencies of the aerated ponds were estimated by conducting the ASCE standard oxygen transfer test in a tank using the same aeration device. Covering pond water surface with the floating bed slightly decreased oxygen transfer efficiency. The diffused membrane aeration (26.7 kg O2 ha-1 d-1) of M-P-M was surprisingly not as effective as plant aeration in the marsh (38.9 to 42.0 kg O2 ha-1 d-1). This unusually low oxygen transfer efficiency of the diffused aeration was attributed to its low submergence depth of 0.8 m compared to typical depth of 4.5 m. The wetlands consisting entirely of marsh removed similar amounts of C and N without investing additional equipment and energy costs of aerating ponds in the middle of wetlands.


Assuntos
Recuperação e Remediação Ambiental/métodos , Oxigênio/química , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Amônia/química , Animais , Suínos
14.
Sci Total Environ ; 688: 574-583, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31254823

RESUMO

Intensive use of agrochemicals is considered one of the major threats for soil quality. In an attempt to mitigate their side-effects on non-target organisms and soil functioning, many engineering and biological remediation methodologies are currently available. Among them, the use of biochar, a carbonaceous material produced from pyrolysing biomass, represents an attractive option enhancing both remediation and soil carbon storage potentials. Currently, activation of biochar with chemical or physical agents seeks for improving its remediation potential, but most of them have some undesirable drawbacks such as high costs and generation of chemical wastes. Alternatively, the use of biological procedures to activate biochar with extracellular enzymes is gaining acceptance mainly due to its eco-friendly nature and cost-effectiveness. In these strategies, microorganisms play a key role as a source of extracellular enzymes, which are retained on the biochar surface. Recently, several studies point out that soil macrofauna (earthworms) may act as a biological vector facilitating the adsorption of enzymes on biochar. This paper briefly introduces current biochar bioactivation methodologies and the mechanisms underlying the coating of biochar with enzymes. We then propose a new conceptual model using earthworms to activate biochar with extracellular enzymes. This new earthworm-biochar model can be used as a theoretical framework to produce a new product "vermichar", vermicompost produced from blended feedstock, earthworms, and biochar that can be used to improve soil quality and remove soil contaminants. This model can also be used to develop innovative in-situ "vermiremediation" technologies utilizing the beneficial effects of both earthworms and biochar. Since biochar may contain toxic chemicals generated during its production stages or later concentrated when applied to polluted soils, this paper also highlights the need for an ecotoxicological knowledge around earthworm-biochar interaction, promoting further discussion on suitable procedures for assessing the environmental risk of this conceptual model application in soil bioremediation.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Oligoquetos/fisiologia , Solo/química , Adsorção , Animais , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
15.
Bioresour Technol ; 99(17): 7941-53, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18485701

RESUMO

The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.


Assuntos
Animais Domésticos , Fontes de Energia Bioelétrica , Conservação de Recursos Energéticos/métodos , Animais , Temperatura
16.
Sci Total Environ ; 616-617: 335-344, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29126051

RESUMO

Assessing biochar's ability to resist oxidation is fundamental to understanding its potential to sequester carbon. Chemical oxidation exhibits good performance in estimating the oxidation resistance of biochar. Herein, oxidation resistance of 14 types of biochars produced from four feedstocks at different pyrolysis conditions (hydrothermal versus thermal carbonization) was investigated via hydrogen peroxide oxidation with varying concentrations. The oxidation resistance of organic carbon (C) of hydrochars was relatively higher than that of 250°C pyrochars (P250) but was comparable to that of 450°C pyrochars (P450). Both hydrochars and P450 from ash-rich feedstocks contained at least three different C pools (5.9-18.3% labile, 43.2-56.5% semi-labile and 26.9-45.9% stable C). Part (<33%) of aromatic C within 600°C pyrochars (P600) was easily oxidizable, which consisted of amorphous C. The influence of pyrolysis temperature upon oxidation resistance of biochars depended on the feedstock. For ash-rich feedstock (rice straw, swine manure and poultry litter), the oxidation resistance of biochars was determined by both aromaticity and mineral components, and mineral protection was regulated by pyrolysis conditions. The amorphous silicon within hydrochars and P450 could interact with C, preventing C from being oxidized, to some extent. Nevertheless, this type of protection did not occur for P250 and P600.

17.
Bioresour Technol ; 234: 77-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28319776

RESUMO

In this study, hydrochars and pyrochars prepared from animal manures were characterized and were used to remove Sb (III) and Cd (II) from aqueous solution. Fourier transform infrared spectroscopy (FTIR) analysis revealed the interaction between Cd (II) and CO and CO groups within biochars and between Sb (III) and CO, CO and OH groups, respectively. Additionally, the lower absolute value of zeta potential of biochar after loading Sb (III) and Cd (II) suggested the occurrence of surface complexation. Existing primarily in the form of Sb (OH)3, the maximum adsorption capacities (Qmax) for Sb (III) were lower than those for Cd (II). Due to the lower contents of surface polar functional groups and less negative surface charge, hydrochars exhibited lower Qmax for Sb (III) and Cd (II) than pyrochars. However, hydrochars in this study had higher sorption capacities for Cd (II) than most of plant-based pyrochars reported by other literature.


Assuntos
Cádmio/química , Esterco , Adsorção , Animais , Antimônio , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Waste Manag ; 69: 480-491, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28888805

RESUMO

Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes.


Assuntos
Alimentos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Carbono , Temperatura Alta
19.
Chemosphere ; 142: 56-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26206746

RESUMO

Sorption behavior of propiconazole (PROPI) by plant-residue derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at three heating treatment temperatures (HTTs) (300, 450 and 600 °C) (e.g., BCs300, BCs450, and BCs600) and their corresponding de-ashed BCs450 was investigated. PLABs belonged to high- or medium-C biochars and ANIBs were low-C biochars. Surface C concentrations of the tested biochars were generally higher than their corresponding bulk C. Surface polar groups were mainly composed of O-containing groups of minerals within biochars. The nonlinearity coefficients (n) of propiconazole (PROPI) sorption isotherms ranged from 0.23 to 0.64, which was significantly and negatively related to organic carbon (OC)-normalized CO2-surface area (CO2-SA/OC) of biochars. This correlation along with the positive relationship between CO2-SA/OC and aromaticity indicates that pore-filling in nanopores within aromatic C dominate nonlinear PROPI sorption. HTTs or C contents do not necessarily regulate PROPI sorption. Removal of minerals from BCs450 elevated PROPI sorption because minerals may exert certain influence on sorption via impacting spatial arrangement of polar groups and/or organic matter (OM)-mineral interactions. This study helps to better understand sorption behavior of PROPI to biochars and evaluate the potential role of biochar in water treatment systems.


Assuntos
Carvão Vegetal/química , Poluentes Ambientais/química , Minerais/química , Nanoporos , Temperatura , Triazóis/química , Adsorção , Animais , Poluentes Ambientais/isolamento & purificação , Triazóis/isolamento & purificação
20.
Chemosphere ; 144: 285-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26364218

RESUMO

Sorption behavior of acetochlor (ACE), dibutyl phthalate (DBP), 17α-Ethynyl estradiol (EE2) and phenanthrene (PHE) with biochars produced from three feedstocks (maize straw (MABs), pine wood dust (WDBs) and swine manure (SWBs)) at seven heat treatment temperatures (HTTs) was evaluated. The bulk polarity of these biochars declined with increasing HTT while the aromaticity and CO2-surface area (CO2-SA) rose. The surface OC contents of biochars were generally higher than bulk OC contents. The organic carbon (OC)-normalized CO2-SA (CO2-SA/OC) of biochars significantly correlated with the sorption coefficients (n and logK(oc)), suggesting that pore filling could dominate the sorption of tested sorbates. SWBs had higher logK(oc) values compared to MABs and WDBs, due to their higher ash contents. Additionally, the logK(oc) values for MABs was relatively greater than that for WDBs at low HTTs (≤400 °C), probably resulting from the higher CO2-SA/OC, ash contents and aromaticity of MABs. Surface polarity and the aliphatic C may dominate the sorption of WDBs obtained at relatively low HTTs (≤400 °C), while aromatic C affects the sorption of biochars at high HTTs. Results of this work aid to deepen our understanding of the sorption mechanisms, which is pivotal to wise utilization of biochars as sorbents for hazardous organic compounds.


Assuntos
Carvão Vegetal/química , Poluentes Ambientais/isolamento & purificação , Esterco/análise , Compostos Orgânicos/isolamento & purificação , Madeira/química , Zea mays/química , Adsorção , Animais , Dibutilftalato/isolamento & purificação , Poeira/análise , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Fenantrenos/isolamento & purificação , Propriedades de Superfície , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA