Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Appetite ; 182: 106447, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623774

RESUMO

Vegetable consumption in young children in the UK is well below the recommended five child-sized portions per day. Effective and practical strategies are therefore needed to encourage vegetable consumption in young children. In this exploratory study, we examine the effects of visual familiarization to foods via See & Eat ebooks, which show vegetables on their journey from 'field to fork'. As part of a larger study, in which 242 British families completed a range of measures about their family's eating habits, child's food preferences and potential parent and child predictors of these (Masento et al., 2022), parents were invited to download a See & Eat ebook about a vegetable their child did not eat. Thirty-six families participated in the intervention, looking at the ebook with their child for two weeks and reporting on their child's willingness to taste, intake and liking of the vegetable targeted by the ebook and a matched control vegetable before and after the intervention period. Results showed significant increases in parental ratings of children's acceptance of the target vegetable. Willingness to taste and intake ratings improved for the target vegetable, but not the control vegetable, while liking was reported to increase for both vegetables. These results corroborate previous research demonstrating the benefits of familiarising children with vegetables before they are offered at mealtimes and suggest that ebooks can be added to the set of tools parents can use to support children's vegetable consumption.


Assuntos
Dieta , Verduras , Humanos , Pré-Escolar , Preferências Alimentares , Comportamento Alimentar , Pais
2.
PLoS Comput Biol ; 17(12): e1009654, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898604

RESUMO

How does the brain process sensory stimuli, and decide whether to initiate locomotor behaviour? To investigate this question we develop two whole body computer models of a tadpole. The "Central Nervous System" (CNS) model uses evidence from whole-cell recording to define 2300 neurons in 12 classes to study how sensory signals from the skin initiate and stop swimming. In response to skin stimulation, it generates realistic sensory pathway spiking and shows how hindbrain sensory memory populations on each side can compete to initiate reticulospinal neuron firing and start swimming. The 3-D "Virtual Tadpole" (VT) biomechanical model with realistic muscle innervation, body flexion, body-water interaction, and movement is then used to evaluate if motor nerve outputs from the CNS model can produce swimming-like movements in a volume of "water". We find that the whole tadpole VT model generates reliable and realistic swimming. Combining these two models opens new perspectives for experiments.


Assuntos
Anuros/fisiologia , Tomada de Decisões/fisiologia , Larva/fisiologia , Modelos Neurológicos , Natação/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Biologia Computacional , Técnicas de Patch-Clamp , Rombencéfalo/fisiologia
3.
Appetite ; 168: 105784, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748876

RESUMO

Vegetable consumption falls well below recommended levels for children in the UK. Previous research has found that repeated non-taste sensory exposure over the course of several days increases young children's willingness to touch and taste vegetables. The current study examined the impact of a one-off multisensory non-taste exposure intervention that took place on a single day on children's willingness to taste and intake of the exposed vegetables. Children (N = 110) aged 3- to 4-years-old were assigned to one of three intervention groups or to a control group. Children in all groups participated individually in a single activity session delivered in their nursery. Children in the intervention conditions took part in fun activities that provided either (a) visual exposure, (b) smell and visual exposure, or (c) smell, touch and visual exposure to six raw and prepared vegetables. Children in the control group engaged in a visual exposure activity with non-food items. After the exposure activities, all children were offered the prepared vegetables to eat; their willingness to taste and intake of the vegetables were measured. Results confirmed previous findings of sensory exposure activities increasing children's willingness to taste and intake of vegetables and revealed linear trends in both measures of acceptance with the number of senses engaged; children who took part in smell, touch and visual activities showed the highest level of acceptance. Findings suggest that multisensory exposures are effective in increasing consumption of vegetables in young children and that the effect of sensory exposure to healthy foods may be cumulative, with the more senses engaged prior to offering a food, the better.


Assuntos
Paladar , Verduras , Idoso , Terapia Comportamental , Criança , Pré-Escolar , Preferências Alimentares , Humanos , Olfato
4.
J Pharmacol Exp Ther ; 374(1): 211-222, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345620

RESUMO

The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.


Assuntos
Fígado/efeitos dos fármacos , Linfoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirazóis/efeitos adversos , Pirazóis/farmacologia , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Pirrolidinas/efeitos adversos , Pirrolidinas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Biol Sci ; 286(1899): 20190297, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30900536

RESUMO

All animals use sensory systems to monitor external events and have to decide whether to move. Response times are long and variable compared to reflexes, and fast escape movements. The complexity of adult vertebrate brains makes it difficult to trace the neuronal circuits underlying basic decisions to move. To simplify the problem, we investigate the nervous system and responses of hatchling frog tadpoles which swim when their skin is stimulated. Studying the neuron-by-neuron pathway from sensory to hindbrain neurons, where the decision to swim is made, has revealed two simple pathways generating excitation which sums to threshold in these neurons to initiate swimming. The direct pathway leads to short, and reliable delays like an escape response. The other includes a population of sensory processing neurons which extend firing to introduce noise and delay into responses. These neurons provide a brief, sensory memory of the stimulus, that allows tadpoles to integrate stimuli occurring within a second or so of each other. We relate these findings to other studies and conclude that sensory memory makes a fundamental contribution to simple decisions and is present in the brainstem of a basic vertebrate at a surprisingly early stage in development.


Assuntos
Memória/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tempo de Reação , Xenopus laevis/fisiologia , Animais , Larva/fisiologia , Xenopus laevis/crescimento & desenvolvimento
6.
Immunity ; 33(1): 96-105, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20637658

RESUMO

Memory CD8(+) T cells in the lung airways provide protection from secondary respiratory virus challenge by limiting early viral replication. Here, we demonstrate that although airway-resident memory CD8(+) T cells were poorly cytolytic, memory CD8(+) T cells recruited to the airways early during a recall response showed markedly enhanced cytolytic ability. This enhanced lytic activity did not require cognate antigen stimulation, but rather was dependent on STAT1 transcription factor signaling through the interferon-alpha receptor (Ifnar1), resulting in the antigen-independent expression of granzyme B protein in both murine and human virus-specific T cells. Signaling through Ifnar1 was required for the enhanced lytic activity and control of early viral replication by memory CD8(+) T cells in the lung airways. These findings demonstrate that innate inflammatory signals act directly on memory T cells, enabling them to rapidly destroy infected host cells once they enter infected tissues.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Granzimas/biossíntese , Vírus da Influenza A/fisiologia , Interferon Tipo I/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Animais , Antígenos Virais/imunologia , Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Citotoxicidade Imunológica , Granzimas/genética , Humanos , Imunização Secundária , Memória Imunológica , Vírus da Influenza A/patogenicidade , Interferon Tipo I/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quimera por Radiação , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Mucosa Respiratória/patologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Vírus Sendai/patogenicidade , Transdução de Sinais , Replicação Viral
7.
J Physiol ; 596(24): 6219-6233, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30074236

RESUMO

KEY POINTS: Short-term working memory and decision-making are usually studied in the cerebral cortex; in many models of simple decision making, sensory signals build slowly and noisily to threshold to initiate a motor response after long, variable delays. When touched, hatchling frog tadpoles decide whether to swim; we define the long and variable delays to swimming and use whole-cell recordings to uncover the neurons and processes responsible. Firing in sensory and sensory pathway neurons is short latency, and too brief and invariant to explain these delays, while recordings from hindbrain reticulospinal neurons controlling swimming reveal a prolonged and variable build-up of synaptic excitation which can reach firing threshold and initiate swimming. We propose this excitation provides a sensory memory of the stimulus and may be generated by small reverberatory hindbrain networks. Our results uncover fundamental network mechanisms that allow animals to remember brief sensory stimuli and delay simple motor decisions. ABSTRACT: Many motor responses to sensory input, like locomotion or eye movements, are much slower than reflexes. Can simpler animals provide fundamental answers about the cellular mechanisms for motor decisions? Can we observe the 'accumulation' of excitation to threshold proposed to underlie decision making elsewhere? We explore how somatosensory touch stimulation leads to the decision to swim in hatchling Xenopus tadpoles. Delays measured to swimming in behaving and immobilised tadpoles are long and variable. Activity in their extensively studied sensory and sensory pathway neurons is too short-lived to explain these response delays. Instead, whole-cell recordings from the hindbrain reticulospinal neurons that drive swimming show that these receive prolonged, variable synaptic excitation lasting for nearly a second following a brief stimulus. They fire and initiate swimming when this excitation reaches threshold. Analysis of the summation of excitation requires us to propose extended firing in currently undefined presynaptic hindbrain neurons. Simple models show that a small excitatory recurrent-network inserted in the sensory pathway can mimic this process. We suggest that such a network may generate slow, variable summation of excitation to threshold. This excitation provides a simple memory of the sensory stimulus. It allows temporal and spatial integration of sensory inputs and explains the long, variable delays to swimming. The process resembles the 'accumulation' of excitation proposed for cortical circuits in mammals. We conclude that fundamental elements of sensory memory and decision making are present in the brainstem at a surprisingly early stage in development.


Assuntos
Memória/fisiologia , Tato/fisiologia , Xenopus laevis/fisiologia , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Larva/fisiologia , Modelos Biológicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Tempo de Reação , Natação/fisiologia , Gravação em Vídeo
8.
Immunity ; 29(1): 101-13, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18617426

RESUMO

Innate recognition of invading pathogens in peripheral tissues results in the recruitment of circulating memory CD8(+) T cells to sites of localized inflammation during the early phase of a recall response. However, the mechanisms that control the rapid recruitment of these cells to peripheral sites are poorly understood, particularly in relation to influenza and parainfluenza infections of the respiratory tract. In this study, we demonstrate a crucial role for C-C chemokine receptor 5 (CCR5) in the accelerated recruitment of memory CD8(+) T cells to the lung airways during virus challenge. Most importantly, CCR5 deficiency resulted in decreased recruitment of memory T cells expressing key effector molecules and impaired control of virus replication during the initial stages of a secondary response. These data highlight the critical importance of early memory T cell recruitment for the efficacy of cellular immunity in the lung.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Receptores CCR5/imunologia , Infecções Respiratórias/imunologia , Viroses/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Citometria de Fluxo , Camundongos , Orthomyxoviridae/imunologia , Receptores CXCR3/imunologia , Infecções Respiratórias/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai/imunologia
9.
PLoS Comput Biol ; 12(1): e1004702, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26824331

RESUMO

What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.


Assuntos
Tronco Encefálico/fisiologia , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Neurônios/fisiologia , Animais , Tronco Encefálico/citologia , Biologia Computacional , N-Metilaspartato/metabolismo , Neurônios/citologia , Xenopus
11.
PLoS Comput Biol ; 11(5): e1004240, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25954930

RESUMO

Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole "decided" to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Biologia Computacional , Fenômenos Eletrofisiológicos , Junções Comunicantes/fisiologia , Larva/citologia , Larva/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Técnicas de Patch-Clamp , Natação/fisiologia , Xenopus laevis/fisiologia
12.
J Immunol ; 193(12): 5827-34, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378595

RESUMO

The oncogenic γ-herpesviruses EBV and Kaposi sarcoma-associated herpesvirus are ubiquitous human pathogens that establish lifelong latent infections maintained by intermittent viral reactivation and reinfection. Effector CD4 T cells are critical for control of viral latency and in immune therapies for virus-associated tumors. In this study, we exploited γHV68 infection of mice to enhance our understanding of the CD4 T cell response during γ-herpesvirus infection. Using a consensus prediction approach, we identified 16 new CD4 epitope-specific responses that arise during lytic infection. An additional epitope encoded by the M2 protein induced uniquely latency-associated CD4 T cells, which were not detected at the peak of lytic infection but only during latency and were not induced postinfection with a latency-deficient virus. M2-specific CD4 T cells were selectively cytotoxic, produced multiple antiviral cytokines, and sustained IL-2 production. Identification of latency-associated cytolytic CD4 T cells will aid in dissecting mechanisms of CD4 immune control of γ-herpesvirus latency and the development of therapeutic approaches to control viral reactivation and pathology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/imunologia , Gammaherpesvirinae/imunologia , Latência Viral , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Epitopos de Linfócito T/química , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interferon gama/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia
13.
Regul Toxicol Pharmacol ; 81: 305-315, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27647628

RESUMO

Ruxolitinib is a selective and potent inhibitor of Janus kinase (JAK) 1 and JAK2. It is approved for the treatment of patients with intermediate or high-risk myelofibrosis, or those with polycythemia vera who have had an inadequate response to or are intolerant of hydroxyurea. To investigate its carcinogenic potential, ruxolitinib was administered by oral gavage once daily to Tg.rasH2 mice for 6 months at doses of 15, 45 or 125 mg/kg/day, and to Sprague-Dawley (Crl:CD) rats for 2 years at 10, 20 or 60 mg/kg/day. Ruxolitinib had no effect on survival, and did not increase the incidence of any neoplastic findings in either species. Exposure (AUC) was similar to or exceeded that associated with therapeutic use. Lymphoid depletion and a decrease in extramedullary hematopoiesis in the spleen occurred in rats, which were attributed to the pharmacologic activity of ruxolitinib. In Tg.rasH2 mice, increased inflammation in the nasal cavity was observed. Dose-dependent decreases in a number of spontaneous neoplastic/preneoplastic lesions were observed in rats, including mammary tumors in females, adrenal pheochromocytomas in males, hepatocellular adenomas/carcinomas in males, and hepatic basophilic (males and females) and eosinophilic (males) foci. Peribiliary fibrosis was also decreased. Clear cell foci in the liver were increased in females. Based on the results of these studies, ruxolitinib is not considered to be carcinogenic.


Assuntos
Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Pirazóis/administração & dosagem , Pirazóis/toxicidade , Administração Oral , Animais , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Nitrilas , Pirazóis/sangue , Pirimidinas , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
J Neurosci ; 34(2): 608-21, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403159

RESUMO

How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.


Assuntos
Redes Neurais de Computação , Neurogênese/fisiologia , Animais , Xenopus
15.
J Physiol ; 593(19): 4423-37, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26138033

RESUMO

KEY POINTS: Deciding whether or how to initiate a motor response to a stimulus can be surprisingly slow and the underlying processes are not well understood. The neuronal circuitry that allows frog tadpoles to swim in response to touch is well characterized and includes excitatory reticulospinal neurons that drive swim circuit neurons. Build-up of excitation to reticulospinal neurons is the key decision-making step for swimming. Asymmetry in this build-up between the two sides allows bilateral initiation at the same time as avoiding inappropriate co-activation of motor antagonists. Following stronger stimuli, reticulospinal neurons are excited through a trigeminal nucleus pathway and swimming starts first on the stimulated side. If this pathway fails or is lesioned, swimming starts later on the unstimulated side. The mechanisms underlying initiation of a simple tadpole motor response may share similarities with more complex decisions in other animals, including humans. ABSTRACT: Animals take time to make co-ordinated motor responses to a stimulus. How can sensory input initiate organized movements, activating all necessary elements at the same time as avoiding inappropriate co-excitation of antagonistic muscles? In vertebrates, this process usually results in the activation of reticulospinal pathways. Young Xenopus tadpoles can respond to head-skin touch by swimming, which may start on either side. We investigate how motor networks in the brain are organized, and whether asymmetries in touch sensory pathways avoid co-activation of antagonists at the same time as producing co-ordinated movements. We record from key reticulospinal neurons in the network controlling swimming. When the head skin is stimulated unilaterally, excitation builds up slowly and asymmetrically in these neurons such that those on both sides do not fire synchronously. This build-up of excitation to threshold is the key decision-making step and determines whether swimming will start, as well as on which side. In response to stronger stimuli, the stimulated side tends to 'win' because excitation from a shorter, trigeminal nucleus pathway becomes reliable and can initiate swimming earlier on the stimulated side. When this pathway fails or is lesioned, swimming starts later and on the unstimulated side. Stochasticity in the trigeminal nucleus pathway allows unpredictable turning behaviour to weaker stimuli, conferring potential survival benefits. We locate the longer, commissural sensory pathway carrying excitation to the unstimulated side and record from its neurons. These neurons fire to head-skin stimuli but excite reticulospinal neurons indirectly. We propose that asymmetries in the sensory pathways exciting brainstem reticulospinal neurons ensure alternating and co-ordinated swimming activity from the start.


Assuntos
Comportamento Animal/fisiologia , Interneurônios/fisiologia , Natação/fisiologia , Animais , Tronco Encefálico/fisiologia , Cabeça , Larva/fisiologia , Estimulação Física , Pele , Xenopus laevis/fisiologia
16.
J Virol ; 88(14): 7862-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789784

RESUMO

CD8 and CD4 T cells are each critically important for immune control of murine gammaherpesvirus 68 (γHV68) infection. In immunocompetent mice, acute γHV68 infection results in lifelong latency, but in the absence of CD4 T cell help, mice succumb to viral recrudescence and disease. However, the requirements for CD4 T cell help in the generation and maintenance of antiviral CD8 T cell responses are incompletely understood, and it is unclear whether there are epitope-specific differences in the requirement of CD8 T cells for CD4 help. In this report, we characterized the CD8 T cell response to γHV68 in major histocompatibility complex (MHC) class II(-/-) mice, which lack CD4 T cells, or after antibody-mediated depletion of CD4 T cells. All antiviral CD8 T cells exhibited marked upregulation of surface expression of the inhibitory receptor programmed death-1 (PD-1), but surprisingly, while the immunodominant memory response appeared to be functionally impaired, helpless CD8 T cells of a subdominant specificity had increased numbers and enhanced functionality. Thus, we demonstrate differential requirements for CD4 help in the antiviral CD8 T cell response to a latent gammaherpesvirus. Importance: γHV68 is a mouse pathogen closely related to the oncogenic human γHVs, which infect a majority of the world's population. Reactivation of these viruses from latency can lead to complications, disease, and even death. CD4 T cells are required for complete immune control of long-term infection, in part by providing key signals to dendritic cells that in turn instruct optimal antiviral CD8 T cell responses. We have investigated multiple virus-specific CD8 T cell responses during infection and identified a subdominant CD8 T cell response that is numerically and functionally enhanced in the absence of CD4 T cell help. This occurs in spite of high surface expression of an inhibitory receptor and in contrast to the immunodominant response, which is impaired. Our data suggest that signals from CD4 T cells are important in maintaining the CD8 T cell hierarchy during γHV infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Rhadinovirus/imunologia , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos/química , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/análise
17.
J Immunol ; 190(7): 3438-46, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23467933

RESUMO

Regulatory CD4(+)Foxp3(+) T cells (Tregs) are key regulators of inflammatory responses and control the magnitude of cellular immune responses to viral infections. However, little is known about how Tregs contribute to immune regulation during memory responses to previously encountered pathogens. In this study, we used MHC class II tetramers specific for the 311-325 peptide from influenza nucleoprotein (NP311-325/IA(b)) to track the Ag-specific Treg response to primary and secondary influenza virus infections. During secondary infections, Ag-specific memory Tregs showed accelerated accumulation in the lung-draining lymph node and lung parenchyma relative to a primary infection. Memory Tregs effectively controlled the in vitro proliferation of memory CD8(+) cells in an Ag-specific fashion that was MHC class II dependent. When memory Tregs were depleted before secondary infection, the magnitude of the Ag-specific memory CD8(+) T cell response was increased, as was pulmonary inflammation and airway cytokine/chemokine expression. Replacement of memory Tregs with naive Tregs failed to restore the regulation of the memory CD8 T cell response during secondary infection. Together, these data demonstrate the existence of a previously undescribed population of Ag-specific memory Tregs that shape the cellular immune response to secondary influenza virus challenges and offer an additional parameter to consider when determining the efficacy of vaccinations.


Assuntos
Antígenos/imunologia , Memória Imunológica , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD4/metabolismo , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Inflamação/imunologia , Inflamação/virologia , Pulmão/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T Reguladores/metabolismo
18.
J Exp Med ; 204(7): 1625-36, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-17606632

RESUMO

The contributions of different subsets of memory CD8+ T cells to recall responses at mucosal sites of infection are poorly understood. Here, we analyzed the CD8+ T cell recall responses to respiratory virus infection in mice and demonstrate that activation markers, such as CD27 and CD43, define three distinct subpopulations of memory CD8+ T cells that differ in their capacities to mount recall responses. These subpopulations are distinct from effector- and central-memory subsets, coordinately express other markers associated with activation status, including CXCR3, CD127, and killer cell lectin-like receptor G1, and are superior to CD62L in predicting the capacity of memory T cells to mediate recall responses. Furthermore, the capacity of vaccines to elicit these memory T cell subpopulations predicted the efficacy of the recall response. These findings extend our understanding of how recall responses are generated and suggest that activation and migration markers define distinct, and unrelated, characteristics of memory T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Ativação Linfocitária , Infecções por Orthomyxoviridae/imunologia , Infecções Respiratórias/imunologia , Linfócitos T/imunologia , Animais , Células Matadoras Naturais/imunologia , Leucossialina/imunologia , Camundongos , Fenótipo , Infecções Respiratórias/virologia , Subpopulações de Linfócitos T/imunologia
19.
J Autoimmun ; 42: 71-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23245703

RESUMO

Human herpesviruses establish lifelong latency. Viral recrudescence can lead to the development of cancers, immunoproliferative disorders, transplantation complications, and thrombocytopenia. Although platelet-specific autoantibodies have been reported in patients infected with the Epstein-Barr virus (EBV), the mechanisms by which thrombocytopenia is induced remain unclear, as do the relative contributions of lytic viral replication and latent viral gene expression. The human gammaherpesviruses are tightly restricted in their ability to infect other mammals, so they are difficult to study in live animal models. Here we show that infection of mice with murine gammaherpesvirus-68 (γHV68), a rodent-specific pathogen closely related to EBV, induces the production of platelet-binding antibodies and causes thrombocytopenia. Infection of antibody-deficient mice does not lead to thrombocytopenia, indicating the platelet decrease is mediated by antibody. Additionally, infection with a latency-null recombinant γHV68 does not induce thrombocytopenia, suggesting factors associated with viral latency drive the infection-induced antibody-mediated thrombocytopenia. These studies describe an important animal model of gammaherpesvirus-induced autoimmune thrombocytopenia and demonstrate that this pathology is mediated by antibody and dependent on viral latency. This model will allow studies of the underlying mechanisms of disease progression and the testing of therapeutic strategies for the alleviation of virus-induced thrombocytopenia.


Assuntos
Anticorpos/imunologia , Transtornos Plaquetários/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 4/imunologia , Latência Viral , Animais , Transtornos Plaquetários/etiologia , Plaquetas/imunologia , Células Cultivadas , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/complicações , Feminino , Infecções por Herpesviridae/complicações , Humanos , Cadeias mu de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Replicação Viral
20.
Tuberculosis (Edinb) ; 139: 102317, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736037

RESUMO

Mycobacteroides abscessus (M. ab) infections are innately resistant to most currently available antibiotics and present a growing, poorly addressed medical need. The existing treatment regimens are lengthy and produce inadequate outcomes for many patients. Importantly, most clinically used drugs and drug candidates against M. ab are either bacteriostatic, or only weakly bactericidal. New strategies exploring a broader chemical space are urgently needed, as innovative agents in development are scarce and hit rates in large unbiased screens against the mycobacterium have been discouragingly low. Here we present a computational chemogenomics-driven approach to discovery of novel antibacterials that effectively reveals drug-like compounds active against M. ab, paired with small sets of predicted molecular targets for the compounds. Several of the bioactive hits identified exhibited rapid bactericidal, including sterilizing, activity against the mycobacterium, indicating that there are currently unexploited chemically tractable molecular mechanisms for rapid sterilization of M. ab. Interestingly, starvation, which typically induces drug tolerance, sensitized M. ab to some of the compounds, resulting in potencies similar to those of drugs in clinical use. The presented drug discovery platform has potential to identify highly differentiated prototype anti-infective molecules and thereby contribute to development of regimens for shorter treatment and improved outcomes for non-tuberculous mycobacterial infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacologia , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA