Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 98, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106386

RESUMO

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Perfilação da Expressão Gênica , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Microambiente Tumoral/genética
2.
J Natl Compr Canc Netw ; 19(10): 1116-1121, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666310

RESUMO

This case report describes an 18-year-old woman with an unusual epithelioid tumor of the omentum with a novel PRRC2B-ALK fusion. Although the atypical pathologic features raised significant diagnostic challenges, expression of CD30 on tumor cells and detection of an ALK rearrangement provided critical information for selecting targeted therapy in a patient not suitable for surgical resection. Despite an initially promising therapeutic response, the patient died. The efficacy of treatment was confirmed by the lack of viable tumor cells at autopsy. This case highlights the role of timely targeted therapy in patients with rare tumors and novel actionable molecular targets.


Assuntos
Sarcoma , Adolescente , Quinase do Linfoma Anaplásico/genética , Feminino , Humanos , Sarcoma/diagnóstico , Adulto Jovem
3.
Pediatr Blood Cancer ; 68(9): e29188, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34137164

RESUMO

Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Criança , Ensaios Clínicos como Assunto , Epigênese Genética , Humanos , Imunoterapia , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases , Adulto Jovem
4.
Int J Cancer ; 146(11): 3184-3195, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621900

RESUMO

Ewing sarcoma (EWS) is the second most common and aggressive type of metastatic bone tumor in adolescents and young adults. There is unmet medical need to develop and test novel pharmacological targets and novel therapies to treat EWS. Here, we found that EWS expresses high levels of a p53 isoform, delta133p53. We further determined that aberrant expression of delta133p53 induced HGF secretion resulting in tumor growth and metastasis. Thereafter, we evaluated targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in preclinical studies. Surprisingly, we found that targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in combination with GD2-specific, CAR-reengineered T-cell therapy synergistically inhibited primary tumor growth and establishment of metastatic disease in preclinical models. Furthermore, our data suggested that AMG102 treatment alone might increase leukocyte infiltration including efficient CAR-T access into tumor mass and thereby improves its antitumor activity. Together, our findings warrant the development of novel CAR-T-cell therapies that incorporate HGF receptor neutralizing antibody to improve therapeutic potency, not only in EWS but also in tumors with aberrant activation of the HGF/c-MET pathway.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Receptores de Antígenos Quiméricos/imunologia , Sarcoma de Ewing/tratamento farmacológico , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/imunologia , Sarcoma de Ewing/patologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Cancer ; 125(20): 3514-3525, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31355930

RESUMO

Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.


Assuntos
Epigenômica , Genômica , Osteossarcoma/terapia , Pesquisa Translacional Biomédica , Criança , Humanos , Mutação/genética , Osteossarcoma/epidemiologia , Osteossarcoma/genética , Osteossarcoma/patologia , Proteômica , Proteína Supressora de Tumor p53/genética
6.
BMC Cancer ; 16(1): 784, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27724924

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. METHODS: We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. RESULTS: We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. CONCLUSIONS: Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Animais , Apoptose/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Análise por Conglomerados , Modelos Animais de Doenças , Cães , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Fenótipo , Proteômica/métodos , Transcriptoma
7.
Pediatr Blood Cancer ; 63(4): 618-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26575538

RESUMO

BACKGROUND: Over 10,000 US children are diagnosed with cancer yearly. Though outcomes have improved by optimizing conventional therapies, recent immunotherapeutic successes in adult cancers are emerging. Cytotoxic T lymphocytes (CTLs) are the primary executioners of adaptive antitumor immunity and require antigenic presentation in the context of major histocompatibility complex (MHC) class I and the associated ß-2-microglobulin (B2M). Loss of MHC I expression is a common immune escape mechanism in adult malignancies, but pediatric cancers have not been thoroughly characterized. The essential nature of MHC I expression in CTL-mediated cell death may dictate the success of immunotherapies, which rely on eliciting an adaptive response. PROCEDURE: We queried pediatric tumor microarray databases for MHC I and B2M gene expression. We detected MHC I in pediatric tumor cell lines by flow cytometry and characterized MHC I and B2M expression in patient samples by immunohistochemistry. To determine whether therapeutic approaches might enhance MHC I expression in selected models in vitro, we tested effects of exposure to IFN-γ and histone deacetylase inhibitors. RESULTS: Pediatric tumors overall, as well as samples within select individual tumor subtypes, exhibit wide ranges of MHC I and B2M gene and protein expression. For most cell lines tested, MHC I was inducible in vitro. CONCLUSIONS: MHC I and B2M expression vary among pediatric tumor types and should be evaluated as potential biomarkers, which might identify patients most likely to benefit from MHC I dependent immunotherapies. Modulation of MHC I expression may be a promising mechanism for enhancing MHC I dependent immunotherapeutic efficacy.


Assuntos
Ensaios Clínicos como Assunto/métodos , Antígenos de Histocompatibilidade Classe I/biossíntese , Imunoterapia/métodos , Neoplasias/imunologia , Seleção de Pacientes , Microglobulina beta-2/biossíntese , Linhagem Celular Tumoral , Criança , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Imuno-Histoquímica , Neoplasias/terapia , Análise de Sequência com Séries de Oligonucleotídeos , Análise Serial de Tecidos , Microglobulina beta-2/análise
9.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260361

RESUMO

Purpose: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression. Experimental design: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models. Conclusions: Our work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions. Statement of translational relevance: Therapies that block metastasis have the potential to save the majority of lives lost due to solid tumors. Disseminated tumor cells must educate the foreign, inhospitable microenvironments they encounter within secondary organs to facilitate metastatic colonization. Our study elucidated that disseminated osteosarcoma cells survive within the lung by co-opting and amplifying the lung's endogenous wound healing response program. More broadly, our results support a model wherein mesenchymal-epithelial cooperation is a key driver of lung metastasis. Osteosarcoma, a pediatric mesenchymal tumor, undergoes lung epithelial induced fibrotic activation while also transforming normal lung epithelial cells towards a fibrosis promoting phenotype. Conversely, adult epithelial carcinomas activate fibrotic signaling in normal lung mesenchymal fibroblasts. Our data implicates fibrosis and abnormal wound healing as key drivers of lung metastasis across multiple tumor types that can be targeted therapeutically to disrupt metastasis progression.

10.
Cell Oncol (Dordr) ; 47(1): 259-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676378

RESUMO

PURPOSE: For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS: We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS: Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION: Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Osteossarcoma , Animais , Cães , Humanos , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteossarcoma/patologia , Fosforilação
11.
Cancers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893209

RESUMO

BACKGROUND: Pediatric patients with metastatic and/or recurrent solid tumors have poor survival outcomes despite standard-of-care systemic therapy. Stereotactic ablative radiation therapy (SABR) may improve tumor control. We report the outcomes with the use of SABR in our pediatric solid tumor population. METHODS: This was a single-institutional study in patients < 30 years treated with SABR. The primary endpoint was local control (LC), while the secondary endpoints were progression-free survival (PFS), overall survival (OS), and toxicity. The survival analysis was performed using Kaplan-Meier estimates in R v4.2.3. RESULTS: In total, 48 patients receiving 135 SABR courses were included. The median age was 15.6 years (interquartile range, IQR 14-23 y) and the median follow-up was 18.1 months (IQR: 7.7-29.1). The median SABR dose was 30 Gy (IQR 25-35 Gy). The most common primary histologies were Ewing sarcoma (25%), rhabdomyosarcoma (17%), osteosarcoma (13%), and central nervous system (CNS) gliomas (13%). Furthermore, 57% of patients had oligometastatic disease (≤5 lesions) at the time of SABR. The one-year LC, PFS, and OS rates were 94%, 22%, and 70%, respectively. No grade 4 or higher toxicities were observed, while the rates of any grade 1, 2, and 3 toxicities were 11.8%, 3.7%, and 4.4%, respectively. Patients with oligometastatic disease, lung, or brain metastases and those who underwent surgery for a metastatic site had a significantly longer PFS. LC at 1-year was significantly higher for patients with a sarcoma histology (95.7% vs. 86.5%, p = 0.01) and for those who received a biological equivalent dose (BED10) > 48 Gy (100% vs. 91.2%, p = 0.001). CONCLUSIONS: SABR is well tolerated in pediatric patients with 1-year local failure and OS rates of <10% and 70%, respectively. Future studies evaluating SABR in combination with systemic therapy are needed to address progression outside of the irradiated field.

12.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464161

RESUMO

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing immunosuppressive macrophages and stimulating granzyme expression in infiltrating T and NK cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.

13.
Cancers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894336

RESUMO

Osteosarcoma (OS) is the most common primary bone malignancy that exhibits remarkable histologic diversity and genetic heterogeneity. The complex nature of osteosarcoma has confounded precise molecular categorization, prognosis, and prediction for this disease. In this study, we performed a comprehensive multiplatform analysis on 86 osteosarcoma tumors, including somatic copy-number alteration, gene expression and methylation, and identified three molecularly distinct and clinically relevant subtypes of osteosarcoma. The subgrouping criteria was validated on another cohort of osteosarcoma tumors. Previously unappreciated osteosarcoma-type-specific changes in specific genes' copy number, expression and methylation were revealed based on the subgrouping. The subgrouping and novel gene signatures provide insights into refining osteosarcoma therapy and relationships to other types of cancer.

14.
Cancer Res Commun ; 3(4): 564-575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066022

RESUMO

Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance: Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Filogenia , Variações do Número de Cópias de DNA/genética , Recidiva Local de Neoplasia , Osteossarcoma/genética , Instabilidade Genômica/genética , Neoplasias Ósseas/genética
15.
Mol Cancer Ther ; 22(4): 539-550, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696581

RESUMO

Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines. Acquired resistance to TZ-1 was developed and characterized in sensitive Rh41 cells. The BRD4 inhibitor, JQ1, was evaluated as an agent to prevent acquired TZ-1 resistance in Rh41 cells. The phosphorylation status of receptor tyrosine kinases (RTK) was assessed. Sensitivity to TZ-1 in vivo was determined in Rh41 parental and TZ-1-resistant xenografts. Of 20 sarcoma cell lines, only Rh41 was sensitive to TZ-1. Cells intrinsically resistant to TZ-1 expressed multiple (>10) activated RTKs or a relatively less complex set of activated RTKs (∼5). TZ-1 decreased the phosphorylation of IGF-1R but had little effect on other phosphorylated RTKs in all resistant lines. TZ-1 rapidly induced activation of RTKs in Rh41 that was partially abrogated by knockdown of SOX18 and JQ1. Rh41/TZ-1 cells selected for acquired resistance to TZ-1 constitutively expressed multiple activated RTKs. TZ-1 treatment caused complete regressions in Rh41 xenografts and was significantly less effective against the Rh41/TZ-1 xenograft. Intrinsic resistance is a consequence of redundant signaling in pediatric sarcoma cell lines. Acquired resistance in Rh41 cells is associated with rapid induction of multiple RTKs, indicating a dynamic response to IGF-1R blockade and rapid development of resistance. The TZ-1 antibody had greater antitumor activity against Rh41 xenografts compared with other IGF-1R-targeted antibodies tested against this model.


Assuntos
Proteínas Nucleares , Sarcoma , Criança , Humanos , Fatores de Transcrição , Receptor IGF Tipo 1 , Sarcoma/tratamento farmacológico , Receptores de Somatomedina , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular , Fatores de Transcrição SOXF
16.
Mol Ther Oncolytics ; 30: 39-55, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37583388

RESUMO

Oncolytic viruses, modified for tumor-restricted infection, are a promising cancer immunotherapeutic, yet much remains to be understood about factors driving their activity and outcome in the tumor microenvironment. Here, we report that oncolytic herpes simplex virus C134, previously found to exert T cell-dependent efficacy in mouse models of glioblastoma, exerts T cell-independent efficacy in mouse models of medulloblastoma, indicating this oncolytic virus uses different mechanisms in different tumors. We investigated C134's behavior in mouse medulloblastomas, using single cell RNA sequencing to map C134-induced gene expression changes across cell types, timepoints, and medulloblastoma subgroup models at whole-transcriptome resolution. Our work details substantial oncolytic virus-induced transcriptional remodeling of medulloblastoma-infiltrating immune cells, 10 subpopulations of monocytes and macrophages collectively demonstrating M1-like responses to C134, and suggests C134 be investigated as a potential new therapy for medulloblastoma.

17.
Cell Rep ; 42(3): 112197, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871221

RESUMO

Recent studies have shown the importance of the dynamic tumor microenvironment (TME) in high-grade gliomas (HGGs). In particular, myeloid cells are known to mediate immunosuppression in glioma; however, it is still unclear if myeloid cells play a role in low-grade glioma (LGG) malignant progression. Here, we investigate the cellular heterogeneity of the TME using single-cell RNA sequencing in a murine glioma model that recapitulates the malignant progression of LGG to HGG. LGGs show increased infiltrating CD4+ and CD8+ T cells and natural killer (NK) cells in the TME, whereas HGGs abrogate this infiltration. Our study identifies distinct macrophage clusters in the TME that show an immune-activated phenotype in LGG but then evolve to an immunosuppressive state in HGG. We identify CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Targeting these intra-tumoral macrophages in the LGG stage may attenuate their immunosuppressive properties and impair malignant progression.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Glioma/genética , Glioma/patologia , Macrófagos/patologia , Análise de Sequência de RNA , Microambiente Tumoral
18.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872450

RESUMO

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Assuntos
Epilepsias Parciais , Mosaicismo , Humanos , Mucosa Bucal , Mutação , Encéfalo , Epilepsias Parciais/genética
19.
J Theor Biol ; 303: 141-51, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22763136

RESUMO

M-CSF is overexpressed in breast cancer and is known to stimulate macrophages to produce VEGF resulting in angiogenesis. It has recently been shown that the growth factor GM-CSF injected into murine breast tumors slowed tumor growth by secreting soluble VEGF receptor-1 (sVEGFR-1) that binds and inactivates VEGF. This study presents a mathematical model that includes all the components above, as well as MCP-1, tumor cells, and oxygen. The model simulations are representative of the in vivo data through predictions of tumor growth using different protocol strategies for GM-CSF for the purpose of predicting higher degrees of treatment success. For example, our model predicts that once a week dosing of GM-CSF would be less effective than daily, twice a week, or three times a week treatment because of the presence of essential factors required for the anti-tumor effect of GM-CSF.


Assuntos
Antineoplásicos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Modelos Biológicos , Animais , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Esquema de Medicação , Células Endoteliais/efeitos dos fármacos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Macrófagos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/patologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Células Tumorais Cultivadas/efeitos dos fármacos
20.
Vet Comp Oncol ; 20(4): 817-824, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35608271

RESUMO

Signal transducer and activator of transcription 3 (STAT3) dysregulation has been characterized in canine OS, with previous data suggesting that constitutive STAT3 activation contributes to survival and proliferation in OS cell lines in vitro. Recently, the contribution of STAT3 to tumour metabolism has been described across several tumour histologies, and understanding the metabolic implications of STAT3 loss may elucidate novel therapeutic approaches with synergistic activity. The objective of this work was to characterize metabolic benchmarks associated with STAT3 loss in canine OS. STAT3 expression and activation was evaluated using western blotting in canine OS cell lines OSCA8 and Abrams. STAT3 was deleted from these OS cell lines using CRISPR-Cas9, and the effects on proliferation, invasion and metabolism (respirometry, intracellular lactate) were determined. Loss of STAT3 was associated with decreased basal and compensatory glycolysis in canine OS cell lines, without modulation of cellular proliferation. Loss of STAT3 also resulted in diminished invasive capacity in vitro. Interestingly, the absence of STAT3 did not impact sensitivity to doxorubicin in vitro. Our data demonstrate that loss of STAT3 modulates features of aerobic glycolysis in canine OS impacting capacities for cellular invasions, suggesting a role for this transcription factor in metastasis.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Animais , Cães , Apoptose , Neoplasias Ósseas/fisiopatologia , Neoplasias Ósseas/veterinária , Linhagem Celular Tumoral , Proliferação de Células , Doenças do Cão/fisiopatologia , Osteossarcoma/fisiopatologia , Osteossarcoma/veterinária , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Deleção de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA