Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002467, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190419

RESUMO

Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient phototransduction and vision. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane, at the surface, in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.


Assuntos
Transdução de Sinal Luminoso , Rodopsina , Animais , Camundongos , Membrana Celular , Microscopia de Fluorescência , Células Fotorreceptoras Retinianas Bastonetes , Mamíferos
2.
Hum Mol Genet ; 33(9): 802-817, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38297980

RESUMO

Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.


Assuntos
Distrofias de Cones e Bastonetes , Tubulina (Proteína) , Humanos , Camundongos , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Distrofias de Cones e Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Mutação
3.
Adv Exp Med Biol ; 1415: 395-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440063

RESUMO

The small size of ciliary structures that underlies photoreceptor function and inherited ciliopathies requires imaging techniques adapted to visualizing them at the highest possible resolution. In addition to powerful super-resolution imaging modalities, emerging approaches to sample preparation, including expansion microscopy (ExM), can provide a robust route to imaging specific molecules at the nanoscale level in the retina. We describe a protocol for applying ExM to whole retinas in order to achieve nanoscale fluorescence imaging of ciliary markers, including tubulin, CEP290, centrin, and CEP164. The results are consistent with those from other super-resolution fluorescence techniques and reveal new insights into their arrangements with respect to the subcompartments of photoreceptor cilia. This technique is complimentary to other imaging modalities used in retinal imaging, and can be carried out in virtually any laboratory, without the need for expensive specialized equipment.


Assuntos
Cílios , Microscopia , Camundongos , Animais , Retina/diagnóstico por imagem , Células Fotorreceptoras
4.
Proc Natl Acad Sci U S A ; 116(47): 23562-23572, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690665

RESUMO

Primary cilia carry out numerous signaling and sensory functions, and defects in them, "ciliopathies," cause a range of symptoms, including blindness. Understanding of their nanometer-scale ciliary substructures and their disruptions in ciliopathies has been hindered by limitations of conventional microscopic techniques. We have combined cryoelectron tomography, enhanced by subtomogram averaging, with superresolution stochastic optical reconstruction microscopy (STORM) to define subdomains within the light-sensing rod sensory cilium of mouse retinas and reveal previously unknown substructures formed by resident proteins. Domains are demarcated by structural features such as the axoneme and its connections to the ciliary membrane, and are correlated with molecular markers of subcompartments, including the lumen and walls of the axoneme, the membrane glycocalyx, and the intervening cytoplasm. Within this framework, we report spatial distributions of key proteins in wild-type (WT) mice and the effects on them of genetic deficiencies in 3 models of Bardet-Biedl syndrome.


Assuntos
Síndrome de Bardet-Biedl/patologia , Cílios/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Cílio Conector dos Fotorreceptores/ultraestrutura , Segmento Externo da Célula Bastonete/ultraestrutura , Imagem Individual de Molécula/métodos , Animais , Axonema/química , Axonema/ultraestrutura , Centríolos/ultraestrutura , Modelos Animais de Doenças , Proteínas do Olho/análise , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/análise , Microtúbulos/ultraestrutura , Complexos Multiproteicos , Proteínas Musculares/análise , Cílio Conector dos Fotorreceptores/química , Proteínas Qa-SNARE/análise , Proteínas Supressoras de Tumor/análise
5.
Pflugers Arch ; 473(9): 1517-1537, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34050409

RESUMO

The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.


Assuntos
Cílios/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Animais , Cílios/fisiologia , Humanos , Células Fotorreceptoras Retinianas Cones/fisiologia , Segmento Interno das Células Fotorreceptoras da Retina/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia
6.
J Am Chem Soc ; 141(37): 14699-14706, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31450884

RESUMO

Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mechanism as suggested by theoretical calculations. Significantly, upon exposure to air and visible light residing in their absorption regime (365-630 nm), thio-caged fluorophores can be efficiently desulfurized to their oxo derivatives, thus restoring strong emission of the fluorophores. The effective photoactivation makes thio-caged fluorophores promising candidates for super-resolution imaging, which was realized by photoactivated localization microscopy (PALM) with low-power activation light under physiological conditions in the absence of cytotoxic additives (e.g., thiols, oxygen scavengers), a feature superior to traditional PALM probes. The versatility of this thio-caging strategy was further demonstrated by multicolor super-resolution imaging of lipid droplets and proteins of interest.


Assuntos
Corantes Fluorescentes/química , Luz , Microscopia de Fluorescência/métodos , Adipócitos/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Fluorescência , Compostos de Sulfidrila/química
8.
Proc Natl Acad Sci U S A ; 111(6): 2188-93, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24453220

RESUMO

In early brain development, ascending thalamocortical axons (TCAs) navigate through the ventral telencephalon (VTel) to reach their target regions in the young cerebral cortex. Descending, deep-layer cortical axons subsequently target appropriate thalamic and subcortical target regions. However, precisely how and when corticothalamic axons (CTAs) identify their appropriate, reciprocal thalamic targets remains unclear. We show here that EphB1 and EphB2 receptors control proper navigation of a subset of TCA and CTA projections through the VTel. We show in vivo that EphB receptor forward signaling and the ephrinB1 ligand are required during the early navigation of L1-CAM(+) thalamic fibers in the VTel, and that the misguided thalamic fibers in EphB1/2 KO mice appear to interact with cortical subregion-specific axon populations during reciprocal cortical axon guidance. As such, our findings suggest that descending cortical axons identify specific TCA subpopulations in the dorsal VTel to coordinate reciprocal cortical-thalamic connectivity in the early developing brain.


Assuntos
Axônios , Córtex Cerebral/metabolismo , Receptores da Família Eph/metabolismo , Transdução de Sinais , Tálamo/metabolismo , Animais , Camundongos , Camundongos Knockout , Receptores da Família Eph/genética
9.
Mol Cell Neurosci ; 52: 106-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23147113

RESUMO

EphB receptors and their ephrinB ligands transduce bidirectional signals that mediate contact-dependent axon guidance primarily by promoting growth cone repulsion. However, how EphB receptor-mediated forward signaling induces axonal repulsion remains poorly understood. Here, we identify Nck and Pak proteins as essential forward signaling components of EphB2-dependent growth cone collapse in cortical neurons. We show that kinase-active EphB2 binds to Pak and promotes growth cone repulsion via Pak kinase activity, Pak-Nck binding, RhoA signaling and endocytosis. However, Pak's function in this context appears to be independent of Rac/Cdc42-GTP, consistent with the absence of Rac-GTP production after ephrinB treatment of cortical neurons. Taken together, our findings suggest that ephrinB-activated EphB2 receptors recruit a novel Nck/Pak signaling complex to mediate repulsive cortical growth cone guidance, which may be relevant for EphB forward signaling-dependent axon guidance in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cones de Crescimento/metabolismo , Neurogênese/fisiologia , Proteínas Oncogênicas/metabolismo , Receptor EphB2/metabolismo , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/metabolismo , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Efrinas/metabolismo , Técnicas de Introdução de Genes , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
10.
bioRxiv ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39484588

RESUMO

Rod photoreceptor neurons in the retina detect scotopic light by packaging large quantities of the visual pigment protein rhodopsin (Rho) into stacked membrane discs within their outer segments (OS). Efficient Rho trafficking to the OS through the inner rod compartments is critical for long-term rod health since diseases like retinitis pigmentosa (RP) induce Rho mislocalization in these inner compartments, including in the rod presynaptic terminals (i.e., "spherules"). Given the importance of protein trafficking to the OS, less is known about the trafficking of rod synaptic proteins that maintain critical synapses between rods and inner retina neurons. Furthermore, the subcellular impact of Rho mislocalization on rod spherules has not been investigated. In this study we used super-resolution and electron microscopies, along with proteomic measurements of rod synaptic proteins, to perform an intensive subcellular analysis of Rho synaptic mislocalization in P23H-Rho-RFP RP mutant mice of both sexes. We discovered mutant P23H-Rho-RFP protein mislocalized in distinct ER aggregations within the spherule cytoplasm which we confirmed in wild type (WT) rods overexpressing P23H-Rho-RFP. Additionally, we found significant protein abundance differences in Dystrophin, BASSOON, ELFN1 and other synaptic proteins in P23H-Rho-RFP mice. By comparison, Rho mislocalized along the spherule plasma membrane in WT rods and in rd10 RP mutant rods, in which there was no synaptic protein disruption. Throughout the study, we also identified a network of ER membranes within WT rod presynaptic spherules. Together, our findings establish a previously uncharacterized ER-based secretory system that mediates normal trafficking and turnover at mouse rod synapses. Significance Statement: In the retina, protein trafficking to the outer segments in rod photoreceptor neurons is essential for vision; however, less is known about protein trafficking to the synapses that rods form with downstream retinal neurons. Stressors like retinitis pigmentosa (RP) and other inherited retinal diseases cause widespread rhodopsin (Rho) protein mislocalization in rods, including at the presynaptic terminals. This study examines the subcellular impact of Rho mislocalization on this presynaptic region caused by the P23H-Rho RP mutation and in other contexts. Mutant P23H-Rho-RFP fusion endoplasmic reticulum (ER) aggregation disrupted rod-specific synaptic protein levels, and combined with the detection of an endogenous presynaptic ER network in rods, this study supports a disease-relevant ER-based protein trafficking and turnover mechanism at rod synapses.

11.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131638

RESUMO

Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient long-term phototransduction. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.

12.
Cell Rep Methods ; 2(7): 100253, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880013

RESUMO

Fine-scale molecular architecture is critical for nervous system and other biological functions. Methods to visualize these nanoscale structures would benefit from enhanced accessibility, throughput, and tissue compatibility. Here, we report RAIN-STORM, a rapid and scalable nanoscopic imaging optimization approach that improves three-dimensional visualization for subcellular targets in tissue at depth. RAIN-STORM uses conventional tissue samples and readily available reagents and is suitable for commercial instrumentation. To illustrate the efficacy of RAIN-STORM, we utilized the retina. We show that RAIN-STORM imaging is versatile and provide 3D nanoscopic data for over 20 synapse, neuron, glia, and vasculature targets. Sample preparation is also rapid, with a 1-day turnaround from tissue to image, and parameters are suitable for multiple tissue sources. Finally, we show that this method can be applied to clinical samples to reveal nanoscale features of human cells and synapses. RAIN-STORM thus paves the way for high-throughput studies of nanoscopic targets in tissue.


Assuntos
Imageamento Tridimensional , Neurônios , Humanos , Microscopia de Fluorescência , Neuroglia , Sinapses
13.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275162

RESUMO

The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética , RNA Mensageiro/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
14.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34520396

RESUMO

Mutations in the cilium-associated protein CEP290 cause retinal degeneration as part of multiorgan ciliopathies or as retina-specific diseases. The precise location and the functional roles of CEP290 within cilia and, specifically, the connecting cilia (CC) of photoreceptors, remain unclear. We used super-resolution fluorescence microscopy and electron microscopy to localize CEP290 in the CC and in the primary cilia of cultured cells with subdiffraction resolution and to determine effects of CEP290 deficiency in 3 mutant models. Radially, CEP290 localizes in close proximity to the microtubule doublets in the region between the doublets and the ciliary membrane. Longitudinally, it is distributed throughout the length of the CC whereas it is confined to the very base of primary cilia in human retinal pigment epithelium-1 cells. We found Y-shaped links, ciliary substructures between microtubules and membrane, throughout the length of the CC. Severe CEP290 deficiencies in mouse models did not prevent assembly of cilia or cause obvious mislocalization of ciliary components in early stages of degeneration. There were fewer cilia and no normal outer segments in the mutants, but the Y-shaped links were clearly present. These results point to photoreceptor-specific functions of CEP290 essential for CC maturation and stability following the earliest stages of ciliogenesis.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Proteínas do Citoesqueleto/metabolismo , Microscopia/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos
15.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30027108

RESUMO

The chemical signal of light onset, a decrease in glutamate release from rod and cone photoreceptors, is processed by a postsynaptic G protein signaling cascade in ON-bipolar cells (BPCs). The metabotropic glutamate receptor mGluR6, along with other cascade elements, is localized synaptically at the BPC dendritic tips. The effector ion channel protein transient receptor potential melastatin-1 (TRPM1), in contrast, is located not only at the dendritic tips but also in BPC bodies and axons. Little is known about the intracellular localization of TRPM1, or its trafficking route to the dendritic tip plasma membrane. Recombinant TRPM1 expressed in mammalian cells colocalized with endoplasmic reticulum (ER) markers, with little or none detected at the plasma membrane. In mouse retina, somatic TRPM1 was similarly intracellular, and not at the plasma membrane. Labeling of ER membranes by expression of a fluorescent marker showed that in BPCs the ER extends into axons and dendrites, but not dendritic tips. In cell bodies, TRPM1 colocalized with the ER, and not with the Golgi apparatus. Fluorescence protease protection (FPP) assays with TRPM1-GFP fusions in heterologous cells revealed that the N and C termini are both accessible to the cytoplasm, consistent with the transmembrane domain topology of related TRP channels. These results indicate that the majority of TRPM1 is present in the ER, from which it can potentially be transported to the dendritic tips as needed for ON light responses. The excess of ER-resident TRPM1 relative to the amount needed at the dendritic tips suggests a potential new function for TRPM1 in the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Células Bipolares da Retina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Axônios/metabolismo , Dendritos/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transporte Proteico
16.
J Cell Biol ; 217(8): 2851-2865, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899041

RESUMO

Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ. This specialized distal zone of the CC in photoreceptors is maintained by SPATA7, which interacts with other photoreceptor-specific ciliary proteins such as RPGR and RPGRIP1. The absence of Spata7 results in the mislocalization of DCC proteins without affecting the PCC protein complexes. This collapse results in destabilization of the axonemal microtubules, which consequently results in photoreceptor degeneration. These data provide a novel mechanism to explain how genetic disruption of ubiquitously present ciliary proteins exerts tissue-specific ciliopathy phenotypes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Cílio Conector dos Fotorreceptores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos de Neoplasias , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/análise , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Cílio Conector dos Fotorreceptores/ultraestrutura , Transporte Proteico/genética
17.
Prog Retin Eye Res ; 55: 32-51, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27352937

RESUMO

The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.


Assuntos
Proteínas de Membrana/metabolismo , Morfogênese , Doenças Retinianas/diagnóstico , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Microscopia Crioeletrônica/métodos , Humanos , Doenças Retinianas/metabolismo
18.
Dev Neurobiol ; 76(4): 405-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26148571

RESUMO

The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.


Assuntos
Comissura Anterior/embriologia , Comissura Anterior/metabolismo , Corpo Caloso/embriologia , Corpo Caloso/metabolismo , Receptor EphB1/metabolismo , Receptor EphB2/metabolismo , Animais , Comissura Anterior/citologia , Axônios/metabolismo , Movimento Celular/fisiologia , Corpo Caloso/citologia , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Imuno-Histoquímica , Espaço Intracelular , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Domínios Proteicos , Receptor EphB1/genética , Receptor EphB2/genética , Transdução de Sinais
19.
Curr Top Behav Neurosci ; 16: 19-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24318963

RESUMO

The development of the vertebrate nervous system, including the brain and spinal cord, progresses in a step-wise fashion that involves the function of thousands of genes. The birth of new neurons (also known as neurogenesis) and their subsequent migration to appropriate locations within the developing brain mark the earliest stages of CNS development. Subsequently, these newborn neurons extend axons and dendrites to make stereotyped synaptic connections within the developing brain, which is a complex process involving cell intrinsic mechanisms that respond to specific extracellular signals. The extension and navigation of the axon to its appropriate target region in the brain and body is dependent upon many cell surface proteins that detect extracellular cues and transduce signals to the inside of the cell. In turn, intracellular signaling mechanisms orchestrate axon structural reorganization and appropriate turning toward or away from a guidance cue. Once the target region is reached, chemical synapses are formed between the axon and target cell, and again, this appears to involve cell surface proteins signaling to the inside of the neuron to stabilize and mature a synapse. Here, we describe some of the key convergent and, in some cases, divergent molecular pathways that regulate axon guidance and synaptogenesis in early brain development. Mutations in genes involved in early brain wiring and synapse formation and pruning increase the risk for developing autism, further highlighting the relevance of brain development factors in the pathophysiology of neurodevelopmental disorders.


Assuntos
Axônios/fisiologia , Citoesqueleto/fisiologia , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Humanos
20.
Nat Neurosci ; 15(12): 1645-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143520

RESUMO

EphB receptor tyrosine kinases control multiple steps in nervous system development. However, it remains unclear whether EphBs regulate these different developmental processes directly or indirectly. In addition, given that EphBs signal through multiple mechanisms, it has been challenging to define which signaling functions of EphBs regulate particular developmental events. To address these issues, we engineered triple knock-in mice in which the kinase activity of three neuronally expressed EphBs can be rapidly, reversibly and specifically blocked. We found that the tyrosine kinase activity of EphBs was required for axon guidance in vivo. In contrast, EphB-mediated synaptogenesis occurred normally when the kinase activity of EphBs was inhibited, suggesting that EphBs mediate synapse development by an EphB tyrosine kinase-independent mechanism. Taken together, our data indicate that EphBs control axon guidance and synaptogenesis by distinct mechanisms and provide a new mouse model for dissecting EphB function in development and disease.


Assuntos
Química Encefálica/genética , Encéfalo/embriologia , Encéfalo/fisiologia , Engenharia de Proteínas/métodos , Receptores da Família Eph/genética , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Química Encefálica/fisiologia , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Gravidez , Ratos , Receptores da Família Eph/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA