Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
PLoS Biol ; 20(12): e3001921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548240

RESUMO

Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.


Assuntos
Conservação dos Recursos Naturais , Spheniscidae , Animais , Humanos , Regiões Antárticas , Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema
2.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38663017

RESUMO

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Assuntos
Biota , Mudança Climática , Camada de Gelo , Perda de Ozônio , Neve , Regiões Antárticas , Animais , Raios Ultravioleta , Estações do Ano , Ozônio Estratosférico/análise
3.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619007

RESUMO

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)
4.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512633

RESUMO

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Ecossistema , Raios Ultravioleta , Mudança Climática , Poluentes Químicos da Água/análise
5.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400222

RESUMO

Vegetation in East Antarctica, such as moss and lichen, vulnerable to the effects of climate change and ozone depletion, requires robust non-invasive methods to monitor its health condition. Despite the increasing use of unmanned aerial vehicles (UAVs) to acquire high-resolution data for vegetation analysis in Antarctic regions through artificial intelligence (AI) techniques, the use of multispectral imagery and deep learning (DL) is quite limited. This study addresses this gap with two pivotal contributions: (1) it underscores the potential of deep learning (DL) in a field with notably limited implementations for these datasets; and (2) it introduces an innovative workflow that compares the performance between two supervised machine learning (ML) classifiers: Extreme Gradient Boosting (XGBoost) and U-Net. The proposed workflow is validated by detecting and mapping moss and lichen using data collected in the highly biodiverse Antarctic Specially Protected Area (ASPA) 135, situated near Casey Station, between January and February 2023. The implemented ML models were trained against five classes: Healthy Moss, Stressed Moss, Moribund Moss, Lichen, and Non-vegetated. In the development of the U-Net model, two methods were applied: Method (1) which utilised the original labelled data as those used for XGBoost; and Method (2) which incorporated XGBoost predictions as additional input to that version of U-Net. Results indicate that XGBoost demonstrated robust performance, exceeding 85% in key metrics such as precision, recall, and F1-score. The workflow suggested enhanced accuracy in the classification outputs for U-Net, as Method 2 demonstrated a substantial increase in precision, recall and F1-score compared to Method 1, with notable improvements such as precision for Healthy Moss (Method 2: 94% vs. Method 1: 74%) and recall for Stressed Moss (Method 2: 86% vs. Method 1: 69%). These findings contribute to advancing non-invasive monitoring techniques for the delicate Antarctic ecosystems, showcasing the potential of UAVs, high-resolution multispectral imagery, and ML models in remote sensing applications.


Assuntos
Inteligência Artificial , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Ecossistema , Dispositivos Aéreos não Tripulados , Regiões Antárticas
6.
Photosynth Res ; 158(2): 151-169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515652

RESUMO

The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica's climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could damage the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen if these strategies will still work as the Antarctic climate changes.


Assuntos
Briófitas , Luz Solar , Regiões Antárticas , Raios Ultravioleta , Água
7.
J Exp Bot ; 73(13): 4592-4604, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35524766

RESUMO

Bryophytes are the group of land plants with the lowest photosynthetic rates, which was considered to be a consequence of their higher anatomical CO2 diffusional limitation compared with tracheophytes. However, the most recent studies assessing limitations due to biochemistry and mesophyll conductance in bryophytes reveal discrepancies based on the methodology used. In this study, we compared data calculated from two different methodologies for estimating mesophyll conductance: variable J and the curve-fitting method. Although correlated, mesophyll conductance estimated by the curve-fitting method was on average 4-fold higher than the conductance obtained by the variable J method; a large enough difference to account for the scale of differences previously shown between the biochemical and diffusional limitations to photosynthesis. Biochemical limitations were predominant when the curve-fitting method was used. We also demonstrated that variations in bryophyte relative water content during measurements can also introduce errors in the estimation of mesophyll conductance, especially for samples which are overly desiccated. Furthermore, total chlorophyll concentration and soluble proteins were significantly lower in bryophytes than in tracheophytes, and the percentage of proteins quantified as Rubisco was also significantly lower in bryophytes (<6.3% in all studied species) than in angiosperms (>16% in all non-stressed cases). Photosynthetic rates normalized by Rubisco were not significantly different between bryophytes and angiosperms. Our data suggest that the biochemical limitation to photosynthesis in bryophytes is more relevant than so far assumed.


Assuntos
Briófitas , Magnoliopsida , Briófitas/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Magnoliopsida/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
8.
Glob Chang Biol ; 28(20): 5861-5864, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821589

RESUMO

Polar landscapes and their unique biodiversity are threatened by climate change. Wild reindeer are cultural and ecological keystone species, traversing across the northern Eurasian Arctic throughout the year (Wild reindeer in the sub-Arctic in Kuhmo, Finland. Photo: Antti Leinonen, Snowchange Cooperative. Used with permission). In contrast, Antarctic terrestrial biodiversity is found on islands in the ice (or ocean) which support unique assemblages of plants and animals (King George Island, South Shetlands; photo Andrew Netherwood. Used with permission). This VSI examines how the changing climate threatens these diverse marine and terrestrial habitats and the biodiversity that they support.


Assuntos
Mudança Climática , Rena , Animais , Regiões Antárticas , Regiões Árticas , Biodiversidade , Biologia , Clima Frio , Ecossistema
9.
Glob Chang Biol ; 28(20): 5865-5880, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35795907

RESUMO

Antarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice-free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice-free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice-free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non-native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at-risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.


Assuntos
Biodiversidade , Ecossistema , Regiões Antárticas , Biota , Mudança Climática , Vento
10.
Glob Chang Biol ; 28(22): 6483-6508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35900301

RESUMO

Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Solo , Água
11.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962368

RESUMO

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Assuntos
Antiprotozoários/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/diagnóstico por imagem , Inibidores de Proteassoma/administração & dosagem , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/química , Sítios de Ligação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania donovani/química , Leishmania donovani/enzimologia , Leishmania infantum/química , Leishmania infantum/enzimologia , Leishmaniose Visceral/parasitologia , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
12.
Glob Chang Biol ; 27(22): 5681-5683, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392574

RESUMO

The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.


Assuntos
Perda de Ozônio , Ozônio , Mudança Climática , Ecossistema , Humanos , Ozônio Estratosférico , Raios Ultravioleta/efeitos adversos
13.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629799

RESUMO

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Assuntos
Recifes de Corais , Ecossistema , Regiões Antárticas , Biodiversidade , Mudança Climática , Humanos
14.
Glob Chang Biol ; 26(6): 3178-3180, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227664

RESUMO

This summer, a heatwave across Antarctica saw temperatures soar above average. Temperatures above zero are especially significant because they accelerate ice melt. Casey Station had its highest temperature ever, reaching a maximum of 9.2°C and minimum of 2.5°C. The highest temperature in Antarctica was 20.75°C on 9 February. Here we discuss the biological implications of such extreme events.


Assuntos
Temperatura Alta , Regiões Antárticas , Congelamento , Estações do Ano , Temperatura
15.
J Sci Food Agric ; 100(2): 695-704, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31602647

RESUMO

BACKGROUND: Long chain omega-3 polyunsaturated fatty acid (LCn3PUFA) nanoemulsion enriched foods offer the potential to address habitually low oily fish intakes. Nanoemulsions increase LCn3PUFA bioavailability, although they may cause lipid oxidation. The present study examined the oxidative stability of LCn3PUFA algal oil-in-water nanoemulsions created by ultrasound using natural and synthetic emulsifiers during 5 weeks of storage at 4, 20 and 40 °C. Fatty acid composition, droplet size ranges and volatile compounds were analysed. RESULTS: No significant differences were found for fatty acid composition at various temperatures and storage times. Lecithin nanoemulsions had significantly larger droplet size ranges at baseline and during storage, regardless of temperatures. Although combined Tween 40 and lecithin nanoemulsions had low initial droplet size ranges, there were significant increases at 40 °C after 5 weeks of storage. Gas chromatograms identified hexanal and propanal as predominant volatile compounds, along with 2-ethylfuran, propan-3-ol and valeraldehyde. The Tween 40 only nanoemulsion sample showed the formation of lower concentrations of volatiles compared to lecithin samples. The formation of hexanal and propanal remained stable at lower temperatures, although higher concentrations were found in nanoemulsions than in bulk oil. The lecithin only sample had formation of higher concentrations of volatiles at increased temperatures, despite having significantly larger droplet size ranges than the other samples. CONCLUSION: Propanal and hexanal were the most prevalent of five volatile compounds detected in bulk oil and lecithin and/or Tween 40 nanoemulsions. Oxidation compounds remained more stable at lower temperatures, indicating suitability for the enrichment of refrigerated foods. Further research aiming to evaluate the oxidation stability of these systems within food matrices is warranted. © 2019 Society of Chemical Industry.


Assuntos
Ácidos Graxos Ômega-3/química , Alimento Funcional/análise , Óleos de Plantas/química , Emulsificantes/química , Emulsões/química , Alimentos Fortificados/análise , Lecitinas/química , Oxirredução , Tamanho da Partícula , Temperatura , Vegetarianos
16.
Photochem Photobiol Sci ; 18(3): 681-716, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810560

RESUMO

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems.


Assuntos
Mudança Climática , Ozônio Estratosférico/análise , Raios Ultravioleta , Animais , Dióxido de Carbono/análise , Ecossistema , Poluentes Ambientais/análise , Água Doce/análise , Aquecimento Global , Proliferação Nociva de Algas/efeitos da radiação , Luz , Modelos Químicos , Recursos Naturais , Fotólise/efeitos da radiação , Água do Mar/análise
17.
Photochem Photobiol Sci ; 18(3): 717-746, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810561

RESUMO

This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This "world avoided" scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expected to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the "browning" of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.


Assuntos
Adaptação Biológica , Organismos Aquáticos/fisiologia , Mudança Climática , Perda de Ozônio , Raios Ultravioleta , Animais , Aquicultura , Organismos Aquáticos/efeitos da radiação , Ecossistema , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Peixes/fisiologia , Água Doce/análise , Camada de Gelo/química , Oceanos e Mares , Fotossíntese , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Zooplâncton/fisiologia
18.
Biol Res ; 51(1): 49, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463628

RESUMO

BACKGROUND: Antarctic bryophytes (mosses and liverworts) are resilient to physiologically extreme environmental conditions including elevated levels of ultraviolet (UV) radiation due to depletion of stratospheric ozone. Many Antarctic bryophytes synthesise UV-B-absorbing compounds (UVAC) that are localised in their cells and cell walls, a location that is rarely investigated for UVAC in plants. This study compares the concentrations and localisation of intracellular and cell wall UVAC in Antarctic Ceratodon purpureus, Bryum pseudotriquetrum and Schistidium antarctici from the Windmill Islands, East Antarctica. RESULTS: Multiple stresses, including desiccation and naturally high UV and visible light, seemed to enhance the incorporation of total UVAC including red pigments in the cell walls of all three Antarctic species analysed. The red growth form of C. purpureus had significantly higher levels of cell wall bound and lower intracellular UVAC concentrations than its nearby green form. Microscopic and spectroscopic analyses showed that the red colouration in this species was associated with the cell wall and that these red cell walls contained less pectin and phenolic esters than the green form. All three moss species showed a natural increase in cell wall UVAC content during the growing season and a decline in these compounds in new tissue grown under less stressful conditions in the laboratory. CONCLUSIONS: UVAC and red pigments are tightly bound to the cell wall and likely have a long-term protective role in Antarctic bryophytes. Although the identity of these red pigments remains unknown, our study demonstrates the importance of investigating cell wall UVAC in plants and contributes to our current understanding of UV-protective strategies employed by particular Antarctic bryophytes. Studies such as these provide clues to how these plants survive in such extreme habitats and are helpful in predicting future survival of the species studied.


Assuntos
Briófitas/metabolismo , Briófitas/efeitos da radiação , Parede Celular/metabolismo , Parede Celular/efeitos da radiação , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/efeitos da radiação , Raios Ultravioleta , Análise de Variância , Regiões Antárticas , Briófitas/citologia , Cromatografia Líquida de Alta Pressão , Microscopia Confocal , Pigmentação/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Estações do Ano , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fatores de Tempo
19.
Glob Chang Biol ; 23(8): 2929-2940, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28100027

RESUMO

Species distributions are often simplified to binary representations of the ranges where they are present and absent. It is then common to look for changes in these ranges as indicators of the effects of climate change, the expansion or control of invasive species or the impact of human land-use changes. We argue that there are inherent problems with this approach, and more emphasis should be placed on species relative abundance rather than just presence. The sampling effort required to be confident of absence is often impractical to achieve, and estimates of species range changes based on survey data are therefore inherently sensitive to sampling intensity. Species niches estimated using presence-absence or presence-only models are broader than those for abundance and may exaggerate the viability of small marginal sink populations. We demonstrate that it is possible to transform models of predicted probability of presence to expected abundance if the sampling intensity is known. Using case studies of Antarctic mosses and temperate rain forest trees, we demonstrate additional insights into biotic change that can be gained using this method. While species becoming locally extinct or colonising new areas are extreme and obviously important impacts of global environmental change, changes in abundance could still signal important changes in biological systems and be an early warning indicator of larger future changes.


Assuntos
Mudança Climática , Ecossistema , Briófitas , Florestas , Humanos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA