Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768966

RESUMO

A daily consumption of cranberry juice (CJ) is linked to many beneficial health effects due to its richness in polyphenols but could also awake some intestinal discomforts due to its organic acid content and possibly lead to intestinal inflammation. Additionally, the impact of such a juice on the gut microbiota is still unknown. Thus, this study aimed to determine the impacts of a daily consumption of CJ and its successive deacidification on the intestinal inflammation and on the gut microbiota in mice. Four deacidified CJs (DCJs) (deacidification rates of 0, 40, 60, and 80%) were produced by electrodialysis with bipolar membrane (EDBM) and administered to C57BL/6J mice for four weeks, while the diet (CHOW) and the water were ad libitum. Different parameters were measured to determine intestinal inflammation when the gut microbiota was profiled. Treatment with a 0% DCJ did not induce intestinal inflammation but increased the gut microbiota diversity and induced a modulation of its functions in comparison with control (water). The effect of the removal of the organic acid content of CJ on the decrease of intestinal inflammation could not be observed. However, deacidification by EDBM of CJ induced an additional increase, in comparison with a 0% DCJ, in the Lachnospiraceae family which have beneficial effects and functions associated with protection of the intestine: the lower the organic acid content, the more bacteria of the Lachnospiraceae family and functions having a positive impact on the gut microbiota.


Assuntos
Ácidos/efeitos adversos , Sucos de Frutas e Vegetais/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Vaccinium macrocarpon/efeitos adversos , Ácidos/química , Ácidos/isolamento & purificação , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biodiversidade , Diálise/métodos , Feminino , Sucos de Frutas e Vegetais/análise , Concentração de Íons de Hidrogênio , Inflamação/etiologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Vaccinium macrocarpon/química
2.
J Nutr ; 145(7): 1415-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25995281

RESUMO

BACKGROUND: We previously reported that fish proteins can alleviate metabolic syndrome (MetS) in obese animals and human subjects. OBJECTIVES: We tested whether a salmon peptide fraction (SPF) could improve MetS in mice and explored potential mechanisms of action. METHODS: ApoB(100) only, LDL receptor knockout male mice (LDLR(-/-)/ApoB(100/100)) were fed a high-fat and -sucrose (HFS) diet (25 g/kg sucrose). Two groups were fed 10 g/kg casein hydrolysate (HFS), and 1 group was additionally fed 4.35 g/kg fish oil (FO; HFS+FO). Two other groups were fed 10 g SPF/kg (HFS+SPF), and 1 group was additionally fed 4.35 g FO/kg (HFS+SPF+FO). A fifth (reference) group was fed a standard feed pellet diet. We assessed the impact of dietary treatments on glucose tolerance, adipose tissue inflammation, lipid homeostasis, and hepatic insulin signaling. The effects of SPF on glucose uptake, hepatic glucose production, and inducible nitric oxide synthase activity were further studied in vitro with the use of L6 myocytes, FAO hepatocytes, and J774 macrophages. RESULTS: Mice fed HFS+SPF or HFS+SPF+FO diets had lower body weight (protein effect, P = 0.024), feed efficiency (protein effect, P = 0.018), and liver weight (protein effect, P = 0.003) as well as lower concentrations of adipose tissue cytokines and chemokines (protein effect, P ≤ 0.003) compared with HFS and HFS+FO groups. They also had greater glucose tolerance (protein effect, P < 0.001), lower activation of the mammalian target of rapamycin complex 1/S6 kinase 1/insulin receptor substrate 1 (mTORC1/S6K1/IRS1) pathway, and increased insulin signaling in liver compared with the HFS and HFS+FO groups. The HFS+FO, HFS+SPF, and HFS+SPF+FO groups had lower plasma triglycerides (protein effect, P = 0.003; lipid effect, P = 0.002) than did the HFS group. SPF increased glucose uptake and decreased HGP and iNOS activation in vitro. CONCLUSIONS: SPF reduces obesity-linked MetS features in LDLR(-/-)/ApoB(100/100) mice. The anti-inflammatory and glucoregulatory properties of SPF were confirmed in L6 myocytes, FAO hepatocytes, and J774 macrophages.


Assuntos
Dislipidemias/tratamento farmacológico , Proteínas de Peixes/farmacologia , Intolerância à Glucose/metabolismo , Inflamação/tratamento farmacológico , Obesidade/tratamento farmacológico , Tecido Adiposo/metabolismo , Adiposidade , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Glicemia/metabolismo , Peso Corporal , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Óleos de Peixe/administração & dosagem , Proteínas de Peixes/química , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Peso Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Salmão , Sacarose/administração & dosagem , Sacarose/efeitos adversos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
Food Chem ; 147: 124-30, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24206695

RESUMO

Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Glycine max/química , Células Musculares/metabolismo , Peptídeos/metabolismo , Transporte Biológico , Diálise , Humanos , Peso Molecular , Células Musculares/enzimologia , Peptídeos/química , Peptídeos/isolamento & purificação , Transdução de Sinais , Ultrafiltração/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA