Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Oral Pathol Med ; 51(6): 553-562, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34661317

RESUMO

AIM: To evaluate the potential use of Cephaeline as a therapeutic strategy to manage mucoepidermoid carcinomas (MEC) of the salivary glands. MATERIAL AND METHODS: UM-HMC-1, UM-HMC-2, and UM-HMC-3A MEC cell lines were used to establish the effects of Cephaeline over tumor viability determined by MTT assay. In vitro wound healing scratch assays were performed to address cellular migration while immunofluorescence staining for histone H3 lysine 9 (H3k9ac) was used to identify the acetylation status of tumor cells upon Cephaeline administration. The presence of cancer stem cells was evaluated by the identification of ALDH enzymatic activity by flow cytometry and through functional assays using in vitro tumorsphere formation. RESULTS: A single administration of Cephaeline resulted in reduced viability of MEC cells along with the halt on tumor growth and cellular migration potential. Administration of Cephaeline resulted in chromatin histone acetylation as judged by the increased levels of H3K9ac and disruption of tumorspheres formation. Interestingly, ALDH levels were increased in UM-HMC-1 and UM-HMC-3A cell lines, while UM-HMC-2 showed a reduced enzymatic activity. CONCLUSION: Cephaeline has shown anti-cancer properties in all MEC cell lines tested by regulating tumor cells' viability, migration, proliferation, and disrupting the ability of cancer cells to generate tumorspheres.


Assuntos
Carcinoma Mucoepidermoide , Acetilação/efeitos dos fármacos , Carcinoma Mucoepidermoide/metabolismo , Linhagem Celular Tumoral , Emetina/análogos & derivados , Emetina/farmacologia , Histonas/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia
2.
Nutr Cancer ; 73(11-12): 2687-2694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33287590

RESUMO

PURPOSE: Evaluate tryptophan and thymine (TT) impact on carcinogenesis and intravesical BCG bladder cancer treatment. METHODS: After identification of TT in vitro inhibitory effect in multiple cancer cell cultures, bladder cancer animal model was induced by MNU intravesical instillations and randomized into four groups: Control (n = 9), BCG (n = 9), TT (n = 7), and BCG + TT (n = 8). BCG groups received intravesical 106 CFU BCG in 0.2 ml saline for 6 consecutive weeks and TT groups received 1 g/kg (1:1) of TT via daily gavage. After 15 wk of protocol, animals were euthanized and the urinary bladders submitted to histopathology, immunohistochemistry, and Western blotting. RESULTS: Urothelial cancer was identified in 100%, 85.7%, 44.5%, and 37.5% of Control, TT, BCG, and BCG + TT groups, respectively. Cell proliferation marked by nuclear Ki-67 was higher in the Control compared to animals in the other groups (P = 0.03). BCG, TT, and BCG + TT groups showed proliferative cell decline and TLR4/5 labeling increase in the urothelium. BCG decreased the urothelial VEGF labeling, even in TT association. CONCLUSION: TT inhibit urothelial carcinogenesis and potentiate the intravesical BCG in the treatment of bladder cancer by reducing cell proliferation and activating TLRs.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Vacina BCG/uso terapêutico , Carcinogênese , Suplementos Nutricionais , Timina/uso terapêutico , Triptofano/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
J Urol ; 193(2): 682-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25200808

RESUMO

PURPOSE: We characterized the functional consequences of intravesical bacillus Calmette-Guérin on the molecular mechanism of the AKT/mTOR signaling pathway in nonmuscle invasive bladder cancer. To our knowledge this has not been reported previously. MATERIALS AND METHODS: At age 7 weeks female Fischer 344 rats received 1.5 mg/kg MNU intravesically every other week for 6 weeks. They were randomized at 10 per group to MNU (0.2 ml vehicle), bacillus Calmette-Guérin (10(6) cfu Connaught strain), rapamycin (15 µg/ml) and bacillus Calmette-Guérin plus simultaneous rapamycin, each intravesically for 6 weeks. At week 15 the bladders were collected for histopathology, immunohistochemistry and immunoblot to determine p-AKT, Rictor, Raptor, p-4E-BP1, p-p70S6K1, p-AMPK-α, p-mTOR and p-p53. RESULTS: Papillary carcinoma (pTa) and high grade intraepithelial neoplasia (pTis) predominated in the MNU group while normal urothelium, papillary and flat hyperplasia were more common in treated groups. Nonmuscle invasive bladder cancer treated with bacillus Calmette-Guérin showed suppression of p70S6K1 but not 4E-BP1 phosphorylation. This suggests that 4E-BP1 is regulated differently than p70S6K1, escaping the bacillus Calmette-Guérin action that occurs in a mTOR independent manner. The association of bacillus Calmette-Guérin with rapamycin but not rapamycin monotherapy affected p70S6K1 and 4E-BP1 phosphorylation with no features of in situ carcinoma (pTis). CONCLUSIONS: The activation status of p70S6K1 and 4E-BP1 might be used to stratify patients who could benefit from targeting such molecular elements with multitarget/multidrug intravesical therapy. In the future 4E-BP1 might be a worthwhile new target for bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Vacina BCG/administração & dosagem , Fosfoproteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Animais , Vacina BCG/uso terapêutico , Proteínas de Ciclo Celular , Feminino , Invasividade Neoplásica , Fosforilação , Ratos , Ratos Endogâmicos F344 , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
4.
World J Urol ; 33(3): 413-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24871424

RESUMO

OBJECTIVE: The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. METHODS: Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. RESULTS: There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). CONCLUSIONS: The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.


Assuntos
Carcinoma de Células de Transição/fisiopatologia , Modelos Animais de Doenças , Resistência à Doença/fisiologia , Receptor 2 Toll-Like/fisiologia , Neoplasias da Bexiga Urinária/fisiopatologia , Uroplaquina III/fisiologia , Animais , Apoptose/fisiologia , Carcinoma de Células de Transição/induzido quimicamente , Carcinoma de Células de Transição/patologia , Proliferação de Células/fisiologia , Feminino , Metilnitrosoureia/efeitos adversos , Fenótipo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/patologia
5.
Int J Clin Exp Pathol ; 15(9): 373-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237635

RESUMO

BACKGROUND: Recently, the role of subclinical inflammation in obesity has gained prominence. An association between obesity and chronic inflammation has been observed in several studies that show a relationship between increased morbidity and high Body Mass Index (BMI). This study aims to compare inflammatory pathways in obese (by high-fat diet) and non-obese mice after exposure to an intravesical carcinogen in a cystitis model. METHODS: We divided 16 female, 7 week old mice into two groups: 1) CONTROL: standard diet, and 2) OBESE: high fat diet for 8 weeks. Both groups underwent a protocol for N-Nitroso-N-methylurea (MNU) pro-inflammatory bladder instillation. Bladder was analyzed by histopathology and western blotting for proteins of the inflammatory pathway (JNK, NFκB, c-JUN, IKK), and immunohistochemistry (proliferation and apoptosis). RESULTS: While mice eating standard diet showed minimal histologic alteration in 4 of 5 (80%) bladder tissues, those eating a high fat diet showed moderate (60%) and intense (40%) chronic active inflammation with dysplasia foci, increased proliferation, apoptosis and inflammatory pathway activation with increased NFκB, and also IKKß, JNK, and c-JUN phosphorylation in the urothelium. CONCLUSION: A high-fat diet causes increased urothelial proliferation, apoptosis, and NFκB expression with cystitis exacerbation and dysplasia. Together, these results suggest that obesity induced by a high-fat diet increases the inflammatory pathway in the bladder with possible pre-malignant alterations.

6.
Front Physiol ; 13: 956116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452038

RESUMO

Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.

7.
Front Endocrinol (Lausanne) ; 12: 701994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552556

RESUMO

Obesity and insulin resistance (IR) are well-studied risk factors for systemic cardiovascular disease, but their impact on pulmonary hypertension (PH) is not well clarified. This study aims to investigate if diet-induced obesity induces PH and if peroxisome-proliferator-activated receptor (PPAR-γ) and/or endoplasmic reticulum (ER) stress are involved in this process. Mice were maintained on a high-fat diet (HFD) for 4 months, and IR and PH were confirmed. In a separate group, after 4 months of HFD, mice were treated with pioglitazone (PIO) or 4-phenylbutyric acid for the last month. The results demonstrated that HFD for at least 4 months is able to increase pulmonary artery pressure, which is maintained, and this animal model can be used to investigate the link between IR and PH, without changes in ER stress in the pulmonary artery. There was also a reduction in circulating adiponectin and in perivascular adiponectin expression in the pulmonary artery, associated with a reduction in PPAR-γ expression. Treatment with PIO improved IR and PH and reversed the lower expression of adiponectin and PPAR-γ in the pulmonary artery, highlighting this drug as potential benefit for this poorly recognized complication of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Hipertensão Pulmonar/patologia , Resistência à Insulina , Obesidade/complicações , PPAR gama/antagonistas & inibidores , Artéria Pulmonar/patologia , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , PPAR gama/genética , PPAR gama/metabolismo , Artéria Pulmonar/metabolismo
8.
Life Sci ; 234: 116793, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465735

RESUMO

INTRODUCTION: Environmental factors have a key role in the control of gut microbiota and obesity. TLR2 knockout (TLR2-/-) mice in some housing conditions are protected from diet-induced insulin resistance. However, in our housing conditions these animals are not protected from diet-induced insulin-resistance. AIM: The aim of the present study was to investigate the influence of our animal housing conditions on the gut microbiota, glucose tolerance and insulin sensitivity in TLR2-/- mice. MATERIAL AND METHODS: The microbiota was investigated by metagenomics, associated with hyperinsulinemic euglycemic clamp and GTT associated with insulin signaling through immunoblotting. RESULTS: The results showed that TLR2-/- mice in our housing conditions presented a phenotype of metabolic syndrome characterized by insulin resistance, glucose intolerance and increase in body weight. This phenotype was associated with differences in microbiota in TLR2-/- mice that showed a decrease in the Proteobacteria and Bacteroidetes phyla and an increase in the Firmicutesphylum, associated with and in increase in the Oscillospira and Ruminococcus genera. Furthermore there is also an increase in circulating LPS and subclinical inflammation in TLR2-/-. The molecular mechanism that account for insulin resistance was an activation of TLR4, associated with ER stress and JNK activation. The phenotype and metabolic behavior was reversed by antibiotic treatment and reproduced in WT mice by microbiota transplantation. CONCLUSIONS: Our data show, for the first time, that the intestinal microbiota can induce insulin resistance and obesity in an animal model that is genetically protected from these processes.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Insulina/metabolismo , Receptor 2 Toll-Like/genética , Animais , Estresse do Retículo Endoplasmático , Deleção de Genes , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/microbiologia , Abrigo para Animais , Resistência à Insulina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 Toll-Like/metabolismo
9.
Nutrients ; 11(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832230

RESUMO

In the present study, we aimed to investigate whether chronic oral glutamine (Gln) supplementation may alter metabolic parameters and the inflammatory profile in overweight and obese humans as well as whether Gln may modulate molecular pathways in key tissues linked to the insulin action in rats. Thirty-nine overweight/obese volunteers received 30 g of Gln or alanine (Ala-control) for 14 days. Body weight (BW), waist circumference (WC), hormones, and pro-inflammatory markers were evaluated. To investigate molecular mechanisms, Gln or Ala was given to Wistar rats on a high-fat diet (HFD), and metabolic parameters, euglycemic hyperinsulinemic clamp with tracers, and Western blot were done. Gln reduced WC and serum lipopolysaccharide (LPS) in overweight volunteers. In the obese group, Gln diminished WC and serum insulin. There was a positive correlation between the reduction on WC and LPS. In rats on HFD, Gln reduced adiposity, improved insulin action and signaling, and reversed both defects in glucose metabolism in the liver and muscle. Gln supplementation increased muscle glucose uptake and reversed the increased hepatic glucose production, in parallel with a reduced glucose uptake in adipose tissue. This insulin resistance in AT was accompanied by enhanced IRS1 O-linked-glycosamine association in this tissue, but not in the liver and muscle. These data suggest that Gln supplementation leads to insulin resistance specifically in adipose tissue via the hexosamine pathway and reduces adipose mass, which is associated with improvement in the systemic insulin action. Thus, further investigation with Gln supplementation should be performed for longer periods in humans before prescribing as a beneficial therapeutic approach for individuals who are overweight and obese.


Assuntos
Suplementos Nutricionais , Glutamina/administração & dosagem , Obesidade/terapia , Sobrepeso/terapia , Adulto , Animais , Biomarcadores/metabolismo , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Método Duplo-Cego , Feminino , Técnica Clamp de Glucose , Humanos , Mediadores da Inflamação/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Sobrepeso/etiologia , Sobrepeso/fisiopatologia , Ratos , Ratos Wistar , Circunferência da Cintura/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA