Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(24): 7085-7101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907071

RESUMO

Most of the world's nations (around 130) have committed to reaching net-zero carbon dioxide or greenhouse gas (GHG) emissions by 2050, yet robust policies rarely underpin these ambitions. To investigate whether existing and expected national policies will allow Brazil to meet its net-zero GHG emissions pledge by 2050, we applied a detailed regional integrated assessment modelling approach. This included quantifying the role of nature-based solutions, such as the protection and restoration of ecosystems, and engineered solutions, such as bioenergy with carbon capture and storage. Our results highlight ecosystem protection as the most critical cost-effective climate mitigation measure for Brazil, whereas relying heavily on costly and not-mature-yet engineered solutions will jeopardise Brazil's chances of achieving its net-zero pledge by mid-century. We show that the full implementation of Brazil's Forest Code (FC), a key policy for emission reduction in Brazil, would be enough for the country to achieve its short-term climate targets up to 2030. However, it would reduce the gap to net-zero GHG emissions by 38% by 2050. The FC, combined with zero legal deforestation and additional large-scale ecosystem restoration, would reduce this gap by 62% by mid-century, keeping Brazil on a clear path towards net-zero GHG emissions by around 2040. While some level of deployment of negative emissions technologies will be needed for Brazil to achieve and sustain its net-zero pledge, we show that the more mitigation measures from the land-use sector, the less costly engineered solutions from the energy sector will be required. Our analysis underlines the urgent need for Brazil to go beyond existing policies to help fight climate emergency, to align its short- and long-term climate targets, and to build climate resilience while curbing biodiversity loss.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Agricultura/métodos , Ecossistema , Brasil , Gases de Efeito Estufa/análise
2.
iScience ; 25(10): 105248, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36274931

RESUMO

Aviation and shipping account for 22% of total transport-related CO2 emissions. Low-carbon fuels (such as biofuels and e-fuels) are the most promising alternatives to deeply decarbonize air and maritime transport. A number of technological routes focused on the production of renewable jet fuel can coproduce marine fuels, emulating the economies of scope of crude oil refineries. This work aims to investigate possible synergies in the decarbonization of aviation and shipping in Brazil, selected as an interesting case study. An Integrated Assessment Model (IAM) of national scope is used to explore different combinations of sectoral and national climate targets. This IAM represents not only the energy supply and transport systems but also the agricultural and land-use systems. In the absence of a deep mitigation policy for Brazil, results indicate synergies related to oilseed- and lignocellulosic-based biofuels production routes. Imposing a strict carbon budget to the Brazilian economy compatible with a world well below 2°C, the portfolio of aviation and shipping fuels changes significantly with the need for carbon dioxide removal strategies based on bioenergy. In such a scenario, synergies between the two sectors still exist, but most renewable marine energy supply is a by-product of synthetic diesel produced for road transport, revealing a synergy different from the one originally investigated by this work.

3.
Clim Change ; 167(3-4): 57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483406

RESUMO

Integrated assessment models (IAMs) indicate biomass as an essential energy carrier to reduce GHG emissions in the global energy system. However, few IAMs represent the possibility of co-producing final energy carriers and feedstock. This study fills this gap by developing an integrated analysis of energy, land, and materials. This allows us to evaluate if the production of biofuels in a climate-constrained scenario can co-output biomaterials, being also driven by hydrocarbons/carbohydrates liquid streams made available from the transition to electromobility. The analysis was implemented through the incorporation of a materials module in the Brazilian Land Use and Energy System model. The findings show that bio-based petrochemicals account for 33% of the total petrochemical production in a stringent carbon dioxide mitigation scenario, in 2050. Most of this comes as co-products from facilities that produce advanced fuels as the main product. Moreover, from 2040 mobility electrification leads to the repurpose of ethanol for material production, compensating for the fuel market loss. Finally, the emergence of biorefineries to provide bio-based energy and feedstock reduces petroleum refining utilization in 2050, affecting the production of oil derivatives for energy purposes, and, hence, the GHG emissions associated with their production and combustion. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10584-021-03201-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA