Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Strength Cond Res ; 36(4): 911-919, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282626

RESUMO

ABSTRACT: Bordelon, NM, Jones, DH, Sweeney, KM, Davis, DJ, Critchley, ML, Rochelle, LE, George, AC, and Dai, B. Optimal load magnitude and placement for peak power production in a vertical jump: A segmental contribution analysis. J Strength Cond Res 36(4): 911-919, 2022-Weighted jumps are widely used in power training, however, there are discrepancies regarding which loading optimizes peak jump power. The purpose was to quantify the effects of load magnitudes and placements on the force, velocity, and power production in a countermovement vertical jump. Sixteen male and 15 female subjects performed vertical jumps in 7 conditions: no external load, 10 and 20% dumbbell loads, 10 and 20% vest loads, and 10 and 20% barbell loads with load percentages relative to body weight. Arm swing was encouraged for all, but the barbell load conditions. Kinematics were collected to quantify the whole-body (the person and external loads) forces, velocities, and power as well as segments' contributions to the whole-body forces and velocities. Repeated-measure analyses of variance were performed followed by paired comparisons. Jump heights were the greatest for the no external load and 10% dumbbell conditions. The 10 and 20% dumbbell conditions demonstrated the greatest peak whole-body power, while the 2 barbell conditions showed the lowest peak whole-body power. At the time of peak whole-body power, the 2 dumbbell and 2 vest conditions resulted in greater whole-body forces. Whole-body velocities were the greatest for the no external load and 10% dumbbell conditions. Holding the dumbbells in the hands magnified the effects of external loads in producing forces and velocities. The constraint of arm movements in the barbell conditions limited power production. These findings highlight the importance of load placement and arm swing in identifying the optimal configuration for power production in weighted jumps.


Assuntos
Movimento , Força Muscular , Fenômenos Biomecânicos , Feminino , Humanos , Masculino
2.
Sports Biomech ; : 1-16, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33161870

RESUMO

The purpose was to quantify trunk and lower extremity biomechanics among back and front squats with a straight bar and four squats with different anterior-posterior load placements imposed by a transformer bar. Ten males and eight females performed six squat conditions: back and front squats with a straight bar, back and front squats with a transformer bar, and squats with more posteriorly or anteriorly placed loads with a transformer bar. A constant load of 70% of the participant's one-repetition maximum in the straight-bar front squat was used. Kinematic and kinetic data were collected to quantify joint biomechanics at an estimated parallel squat position in the descending and ascending phases. Squats with more anteriorly placed load significantly decreased trunk flexion and pelvis anterior tilt angles with large effect sizes but increased low-back extension moments with medium to large effect sizes. Hip, knee, and ankle extension moments were generally similar among most conditions. Participants adjusted their trunk and pelvis to mediate the effects of load placements on low-back and lower extremity moments. While lower extremity loading was similar among different squats, the different trunk and pelvis angles and low-back moments should be taken into consideration for people with low-back impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA