Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3224-3230, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37125440

RESUMO

The application of CdSe nanoplatelets (NPLs) in the ultraviolet/blue region remains an open challenge due to charge trapping typically leading to limited photoluminescence quantum efficiency (PL QE) and sub-bandgap emission in core-only NPLs. Here, we synthesized 3.5 monolayer core/crown CdSe/CdS NPLs with various crown dimensions, exhibiting saturated blue emission and PL QE up to 55%. Compared to core-only NPLs, the PL intensity decays monoexponentially over two decades due to suppressed deep trapping and delayed emission. In both core-only and core/crown NPLs we observe biexciton-mediated optical gain between 470 and 510 nm, with material gain coefficients up to 7900 cm-1 and consistently lower gain thresholds in crowned NPLs. Gain lifetimes are limited to 40 ps, due to residual ultrafast trapping and higher exciton densities at threshold. Our results provide guidelines for rational optimization of thin CdSe NPLs toward lighting and light-amplification applications.

2.
Nano Lett ; 22(23): 9537-9543, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36409988

RESUMO

Colloidal CdSe nanoplatelets (NPLs) are unique systems to study two-dimensional excitons and excitonic complexes. However, while absorption and emission of photons through exciton formation and recombination have been extensively quantified, few studies have addressed the exciton-biexciton transition. Here, we use cross-polarized pump-probe spectroscopy to measure the absorption coefficient spectrum of this transition and determine the biexciton oscillator strength (fBX). We show that fBX is independent of the NPL area and that the concomitant biexciton area (SBX) agrees with predictions of a short-range interaction model. Moreover, we show that fBX is comparable to the oscillator strength of forming localized excitons at room temperature while being unaffected itself by center-of-mass localization. These results confirm the relevance of biexcitons for light-matter interaction in NPLs. Moreover, the quantification of the exciton-biexciton transition introduced here will enable researchers to rank 2D materials by the strength of this transition and to compare experimental results with theoretical predictions.


Assuntos
Compostos de Cádmio , Compostos de Selênio , Fótons
3.
Nano Lett ; 21(23): 10062-10069, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842440

RESUMO

Colloidal CdSe quantum rings (QRs) are a recently developed class of nanomaterials with a unique topology. In nanocrystals with more common shapes, such as dots and platelets, the photophysics is consistently dominated by strongly bound electron-hole pairs, so-called excitons, regardless of the charge carrier density. Here, we show that charge carriers in QRs condense into a hot uncorrelated plasma state at high density. Through strong band gap renormalization, this plasma state is able to produce broadband and sizable optical gain. The gain is limited by a second-order, yet radiative, recombination process, and the buildup is counteracted by a charge-cooling bottleneck. Our results show that weakly confined QRs offer a unique system to study uncorrelated electron-hole dynamics in nanoscale materials.

4.
Light Sci Appl ; 10(1): 112, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34054127

RESUMO

2D materials are considered for applications that require strong light-matter interaction because of the apparently giant oscillator strength of the exciton transitions in the absorbance spectrum. Nevertheless, the effective oscillator strengths of these transitions have been scarcely reported, nor is there a consistent interpretation of the obtained values. Here, we analyse the transition dipole moment and the ensuing oscillator strength of the exciton transition in 2D CdSe nanoplatelets by means of the optically induced Stark effect (OSE). Intriguingly, we find that the exciton absorption line reacts to a high intensity optical field as a transition with an oscillator strength FStark that is 50 times smaller than expected based on the linear absorption coefficient. We propose that the pronounced exciton absorption line should be seen as the sum of multiple, low oscillator strength transitions, rather than a single high oscillator strength one, a feat we assign to strong exciton center-of-mass localization. Within the quantum mechanical description of excitons, this 50-fold difference between both oscillator strengths corresponds to the ratio between the coherence area of the exciton's center of mass and the total area, which yields a coherence area of a mere 6.1 nm2. Since we find that the coherence area increases with reducing temperature, we conclude that thermal effects, related to lattice vibrations, contribute to exciton localization. In further support of this localization model, we show that FStark is independent of the nanoplatelet area, correctly predicts the radiative lifetime, and lines up for strongly confined quantum dot systems.

5.
Chem Mater ; 32(21): 9260-9267, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33191978

RESUMO

The typical synthesis protocol for blue-emitting CdSe nanoplatelets (NPLs) yields particles with extended lateral dimensions and large surface areas, resulting in NPLs with poor photoluminescence quantum efficiency. We have developed a synthesis protocol that achieves an improved control over the lateral size, by exploiting a series of long-chained carboxylate precursors that vary from cadmium octanoate (C8) to cadmium stearate (C18). The length of this metallic precursor is key to tune the width and aspect ratio of the final NPLs, and for the shorter chain lengths, the synthesis yield is improved. NPLs prepared with our procedure possess significantly enhanced photoluminescence quantum efficiencies, up to 30%. This is likely due to their reduced lateral dimensions, which also grant them good colloidal stability. As the NPL width can be tuned below the bulk exciton Bohr radius, the band edge blue-shifts, and we constructed a sizing curve relating the NPL absorption position and width. Further adjusting the synthesis protocol, we were able to obtain even thinner NPLs, emitting in the near-UV region, with a band-edge quantum efficiency of up to 11%. Results pave the way to stable and efficient light sources for applications such as blue and UV light-emitting devices and lasers.

6.
Nanoscale ; 11(16): 7613-7623, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30964499

RESUMO

Lead halide perovskites, owing to their flexible, scalable chemistry and promising physical properties are attracting increasing attention for solution-processed optoelectronic and photonic technologies. Despite their well-known 'defect tolerant' electronic structure, studies highlighted the active role of shallow and deep defect states, as well as of oxidative environmental conditions, on the optical and electrical behavior of perovskite nanocubes, films and single bulk crystals. To date, however, no in-depth systematic study of the surface trap-mediated processes in perovskite materials of different dimensionality has been conducted. In this work, we aim to bridge this gap by using O2 as a molecular probe for the effects of surface states on the exciton recombination processes of nanocubes (NCs), nanowires (NWs), nanosheets (NSs) and bulk single crystals (SCs) of CsPbBr3 perovskite. Continuous wave and time-resolved photoluminescence (PL) experiments in a controlled O2 atmosphere reveal the opposite optical response of NCs with respect to higher dimensional perovskites directly deriving from the different nature of the material surfaces. Specifically, O2 passivates surface hole-traps in NWs, NSs and SCs, leading to PL brightening with unaltered recombination dynamics. Conversely, NCs appear to be free from such surface hole-traps and exposure to O2 leads to direct extraction of photogenerated electrons that competes with radiative exciton recombination, leading to dimmed PL efficiency in atmospheric conditions. This opposite oxygen PL response demystifies the critical role of surface passivation in perovskite NCs in stark contrast to higher dimensional nanostructures and single crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA