Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 29(10): 1774-85, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20400940

RESUMO

Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro-fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy-lysosome and the ubiquitin-proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial-dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.


Assuntos
Mitocôndrias/metabolismo , Atrofia Muscular/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Linhagem Celular , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Músculo Esquelético/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
2.
J Cell Sci ; 125(Pt 3): 714-23, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22331361

RESUMO

The stabilisation of acetylcholine receptors (AChRs) at the neuromuscular junction depends on muscle activity and the cooperative action of myosin Va and protein kinase A (PKA) type I. To execute its function, PKA has to be present in a subsynaptic microdomain where it is enriched by anchoring proteins. Here, we show that the AChR-associated protein, rapsyn, interacts with PKA type I in C2C12 and T-REx293 cells as well as in live mouse muscle beneath the neuromuscular junction. Molecular modelling, immunoprecipitation and bimolecular fluorescence complementation approaches identify an α-helical stretch of rapsyn to be crucial for binding to the dimerisation and docking domain of PKA type I. When expressed in live mouse muscle, a peptide encompassing the rapsyn α-helical sequence efficiently delocalises PKA type I from the neuromuscular junction. The same peptide, as well as a rapsyn construct lacking the α-helical domain, induces severe alteration of acetylcholine receptor turnover as well as fragmentation of synapses. This shows that rapsyn anchors PKA type I in close proximity to the postsynaptic membrane and suggests that this function is essential for synapse maintenance.


Assuntos
Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Proteínas Musculares/metabolismo , Receptores Colinérgicos/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteína Quinase Tipo I Dependente de AMP Cíclico/química , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 108(2): 621-5, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187406

RESUMO

The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/fisiologia , Músculos/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Alelos , Animais , Regulação para Baixo , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
4.
Proc Natl Acad Sci U S A ; 107(5): 2031-6, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133847

RESUMO

Myosin V motor proteins facilitate recycling of synaptic receptors, including AMPA and acetylcholine receptors, in central and peripheral synapses, respectively. To shed light on the regulation of receptor recycling, we employed in vivo imaging of mouse neuromuscular synapses. We found that myosin Va cooperates with PKA on the postsynapse to maintain size and integrity of the synapse; this cooperation also regulated the lifetime of acetylcholine receptors. Myosin Va and PKA colocalized in subsynaptic enrichments. These accumulations were crucial for synaptic integrity and proper cAMP signaling, and were dependent on AKAP function, myosin Va, and an intact actin cytoskeleton. The neuropeptide and cAMP agonist, calcitonin-gene related peptide, rescued fragmentation of synapses upon denervation. We hypothesize that neuronal ligands trigger local activation of PKA, which in turn controls synaptic integrity and turnover of receptors. To this end, myosin Va mediates correct positioning of PKA in a postsynaptic microdomain, presumably by tethering PKA to the actin cytoskeleton.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Placa Motora/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Denervação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Proteínas Motores Moleculares/metabolismo , Placa Motora/efeitos dos fármacos , Cadeias Pesadas de Miosina/antagonistas & inibidores , Miosina Tipo V/antagonistas & inibidores , Plasticidade Neuronal , Receptores Colinérgicos/metabolismo , Transdução de Sinais
5.
J Biol Chem ; 285(45): 34589-96, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20813841

RESUMO

The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo imaging technology we show that replacement of the entire receptor population of an individual NMJ occurs end plate-specifically within hours. This makes it possible to follow directly in live animals changing stabilities of end plate receptors. In three different, genetically modified mouse models we demonstrate that the metabolic half-life values of synaptic AChRs increase from a few hours to several days after postnatal day 6. Developmental stabilization is independent of receptor subtype and apparently regulated by an intrinsic muscle-specific maturation program. Myosin Va, an F-actin-dependent motor protein, is also accumulated synaptically during postnatal development and thus could mediate the stabilization of end plate AChR.


Assuntos
Envelhecimento/fisiologia , Placa Motora/metabolismo , Desenvolvimento Muscular/fisiologia , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Placa Motora/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Receptores Nicotínicos/genética , Sinapses/genética
6.
PLoS One ; 7(7): e40860, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815846

RESUMO

BACKGROUND: The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. METHODOLOGY/PRINCIPAL FINDINGS: To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. CONCLUSIONS/SIGNIFICANCE: Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.


Assuntos
Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Junção Neuromuscular/enzimologia , Junção Neuromuscular/fisiopatologia , Regeneração , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Venenos Elapídicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Estabilidade Proteica/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
7.
PLoS One ; 6(6): e20524, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655100

RESUMO

BACKGROUND: The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate a novel approach to follow the kinetics of acetylcholine receptor lifetimes upon pulse labeling of mouse muscles with ¹²5I-α-bungarotoxin in vivo. In contrast to previous assays where residual activity was measured ex vivo, in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently. CONCLUSIONS/SIGNIFICANCE: A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms.


Assuntos
Radioisótopos do Iodo/farmacocinética , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Algoritmos , Animais , Bungarotoxinas/metabolismo , Feminino , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Meia-Vida , Radioisótopos do Iodo/administração & dosagem , Cinética , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Fatores de Tempo
8.
Cell Signal ; 21(5): 819-26, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19263518

RESUMO

Signalling through protein kinase A (PKA) triggers a multitude of intracellular effects in response to a variety of extracellular stimuli. To guarantee signal specificity, different PKA isoforms are compartmentalised by Akinase anchoring proteins (AKAPs) into functional microdomains. By using genetically encoded fluorescent reporters of cAMP concentration that are targeted to the intracellular sites where PKA type I and PKA type II isoforms normally reside, we directly show for the first time spatially and functionally separate PKA microdomains in mouse skeletal muscle in vivo. The reporters localised into clearly distinct patterns within sarcomers, from where they could be displaced by means of AKAP disruptor peptides indicating the presence of disparate PKA type I and PKA type II anchor sites within skeletal muscle fibres. The functional relevance of such differential localisation was underscored by the finding of mutually exclusive and AKAP-dependent increases in [cAMP] in the PKA type I and PKA type II microdomains upon application of different cAMP agonists. Specifically, the sensors targeted to the PKA type II compartment responded only to norepinephrine, whereas those targeted to the PKA type I compartment responded only to alpha-calcitonin gene-related peptide. Notably, in dystrophic mdx mice the localisation pattern of the reporters was altered and the functional separation of the cAMP microdomains was abolished. In summary, our data indicate that an efficient organisation in microdomains of the cAMP/PKA pathway exists in the healthy skeletal muscle and that such organisation is subverted in dystrophic skeletal muscle.


Assuntos
Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Músculo Esquelético/enzimologia , Distrofia Muscular de Duchenne/enzimologia , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Genes Reporter , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Norepinefrina/farmacologia
9.
PLoS One ; 3(12): e3871, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19057648

RESUMO

BACKGROUND: Myosin Va is a motor protein involved in vesicular transport and its absence leads to movement disorders in humans (Griscelli and Elejalde syndromes) and rodents (e.g. dilute lethal phenotype in mice). We examined the role of myosin Va in the postsynaptic plasticity of the vertebrate neuromuscular junction (NMJ). METHODOLOGY/PRINCIPAL FINDINGS: Dilute lethal mice showed a good correlation between the propensity for seizures, and fragmentation and size reduction of NMJs. In an aneural C2C12 myoblast cell culture, expression of a dominant-negative fragment of myosin Va led to the accumulation of punctate structures containing the NMJ marker protein, rapsyn-GFP, in perinuclear clusters. In mouse hindlimb muscle, endogenous myosin Va co-precipitated with surface-exposed or internalised acetylcholine receptors and was markedly enriched in close proximity to the NMJ upon immunofluorescence. In vivo microscopy of exogenous full length myosin Va as well as a cargo-binding fragment of myosin Va showed localisation to the NMJ in wildtype mouse muscles. Furthermore, local interference with myosin Va function in live wildtype mouse muscles led to fragmentation and size reduction of NMJs, exclusion of rapsyn-GFP from NMJs, reduced persistence of acetylcholine receptors in NMJs and an increased amount of punctate structures bearing internalised NMJ proteins. CONCLUSIONS/SIGNIFICANCE: In summary, our data show a crucial role of myosin Va for the plasticity of live vertebrate neuromuscular junctions and suggest its involvement in the recycling of internalised acetylcholine receptors back to the postsynaptic membrane.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA