Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Dis ; 45(9): 1301-1321, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35707921

RESUMO

Gill disease is an important cause of economic losses, fish mortality and reduced animal welfare in salmonid farming. We performed a prospective cohort study, following groups of Atlantic salmon in Western Norway with repeated sampling and data collection from the hatchery phase and throughout the 1st year at sea. The objective was to determine if variation in pathogen prevalence and load, and zoo- and phytoplankton levels had an impact on gill health. Further to describe the temporal development of pathogen prevalence and load, and gill pathology, and how these relate to each other. Neoparamoeba perurans appeared to be the most important cause of gill pathology. No consistent covariation and no or weak associations between the extent of gill pathology and prevalence and load of SGPV, Ca. B. cysticola and D. lepeophtherii were observed. At sea, D. lepeophtherii and Ca. B. cysticola persistently infected all fish groups. Fish groups negative for SGPV at sea transfer were infected at sea and fish groups tested negative before again testing positive. This is suggestive of horizontal transmission of infection at sea and may indicate that previous SGPV infection does not protect against reinfection. Coinfections with three or more putative gill pathogens were found in all fish groups and appear to be the norm in sea-farmed Atlantic salmon in Western Norway.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/epidemiologia , Amebíase/patologia , Amebíase/veterinária , Animais , Estudos de Coortes , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Brânquias/patologia , Humanos , Estudos Prospectivos
2.
J Fish Dis ; 45(6): 871-882, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35352838

RESUMO

The microsporidian Desmozoon lepeophtherii Freeman and Sommerville, 2009 is considered significant in the pathogenesis of gill disease in Atlantic salmon (Salmo salar Linnaeus, 1758). Due to the difficulty in detecting D. lepeophtherii in tissue sections, infections are normally diagnosed by molecular methods, routine haematoxylin and eosin (H&E) stained gill tissue sections and the use of other histochemical stains and labels to confirm the presence of spores. An in situ hybridization (ISH) protocol specific for D. lepeophtherii was developed using DIG-labelled oligonucleotide probes. Diseased Atlantic salmon gills were analysed by ISH, calcofluor white (CW) and H&E. All methods showed high levels of specificity (100%) in their ability to detect D. lepeophtherii, but the sensitivity was higher with ISH (92%), compared with CW (64%) and the presence of microvesicles on H&E stained sections (52%). High levels of D. lepeophtherii spores were significantly associated (p < .05) with the development of D. lepeophtherii-associated pathology in the gills, with Ct values below 19 and over 100 microsporidia/10 mm2 of gill tissue (from the ISH counts) seemingly necessary for the development of microvesicles. The ISH method has the advantage over other histological techniques in that it allows all life stages of the microsporidian to be detected in infected salmon gill tissue sections.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , DNA , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/patologia , Brânquias/patologia , Hibridização In Situ , Microsporídios
3.
J Fish Dis ; 45(11): 1745-1756, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35989490

RESUMO

European North Atlantic ranavirus (ENARV, Iridoviridae), is a ranavirus species recently isolated from lumpfish (Cyclopterus lumpus, L.), which are used as cleaner fish in Atlantic salmon (Salmo salar) farming in Northern Europe. This study aimed to investigate (1) the virulence of ENARV isolates from Ireland, Iceland and the Faroe Islands to lumpfish; (2) horizontal transmission between lumpfish; and (3) virulence to Atlantic salmon parr. Lumpfish were challenged in a cohabitation model using intraperitoneally (IP) injected shedders, and naïve cohabitants. IP challenge with isolates from Iceland (1.9 × 107 TCID50  ml-1 ) and the Faroe Islands (5.9 × 107 TCID50  ml-1 ) reduced survival in lumpfish, associated with consistent pathological changes. IP challenge with the Irish strain (8.6 × 105 TCID50  ml-1 ) did not significantly reduce survival in lumpfish, but the lower challenge titre complicated interpretation. Horizontal transmission occurred in all strains tested, but no clinical impact was demonstrated in cohabitants. Salmon parr were challenged by IP injection with the Irish isolate, no virulence or virus replication were demonstrated. A ranavirus qPCR assay, previously validated for fish ranaviruses, was first used to detect ENARV in tissues of both in lumpfish and Atlantic salmon. This study provides the first data on the assessment of virulence of ENARV isolates to lumpfish and salmon, guidelines for the diagnosis of ENARV infection, and poses a basis for further investigations into virulence markers.


Assuntos
Doenças dos Peixes , Iridoviridae , Perciformes , Ranavirus , Salmo salar , Animais , Peixes
4.
Parasite Immunol ; 42(8): e12766, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32564378

RESUMO

Gill health is one of the main health challenges for Atlantic salmon (Salmo salar L.) mariculture worldwide, and amoebic gill disease (AGD), caused by the marine ectoprotozoan Neoparamoeba perurans, is currently one of the most significant diseases in terms of prevalence and economic impact. This review describes the host response of Atlantic salmon to the disease, focusing on the pathological changes, immune response and mechanisms underlying the prominent epithelial proliferation and mucus hypersecretion occurring in affected fish. Health management strategies and risk factors are also discussed.


Assuntos
Amebíase/imunologia , Amebozoários/imunologia , Doenças dos Peixes/patologia , Brânquias/parasitologia , Salmo salar/parasitologia , Amebíase/patologia , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Brânquias/imunologia , Brânquias/patologia , Muco/metabolismo , Salmo salar/imunologia
5.
J Fish Dis ; 42(12): 1667-1676, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31612537

RESUMO

In recent years, the use of cleaner fish for biological control of sea lice has increased considerably. Along with this, a number of infectious diseases have emerged. The aim of this study was to investigate the susceptibility of lumpfish (Cyclopterus lumpus) to Betanodavirus since it was detected in asymptomatic wild wrasses in Norway and Sweden. Three betanodaviruses were used to challenge lumpfish: one RGNNV genotype and two BFNNV genotypes. Fish were injected and monitored for 4 weeks. Brain samples from clinically affected specimens, from weekly randomly selected fish and survivors were subjected to molecular testing, viral isolation, histopathology and immunohistochemistry. Reduced survival was observed but was attributed to tail-biting behaviour, since no nervous signs were observed throughout the study. Betanodavirus RNA was detected in all samples, additionally suggesting an active replication of the virus in the brain. Viral isolation confirmed molecular biology results and revealed a high viral titre in BFNNV-infected groups associated with typical lesions in brains and eyes of survivor fish. We concluded that lumpfish are susceptible to Betanodavirus, as proven by the high viral titre and brain lesions detected, but further studies are necessary to understand if Betanodavirus can cause clinical disease in this species.


Assuntos
Doenças dos Peixes/patologia , Nodaviridae/genética , Perciformes/virologia , Infecções por Vírus de RNA/veterinária , Animais , Suscetibilidade a Doenças , Doenças dos Peixes/virologia , Genótipo , Noruega , Infecções por Vírus de RNA/patologia
6.
Fish Shellfish Immunol ; 66: 207-216, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28501445

RESUMO

Amoebic gill disease (AGD), caused by the protozoan parasite Neoparamoeba perurans, is one of the most significant infectious diseases for Atlantic salmon (Salmo salar L.) mariculture. The present study investigated the humoral immune response (both local in gill mucus and systemic in serum) of farmed Atlantic salmon naturally infected with N. perurans in commercial sea pens, at two different stages of the disease and after freshwater treatment. Parameters analysed included activity of immune related enzymes (i.e. lysozyme, peroxidase, protease, anti-protease, esterase, alkaline phosphatase), IgM levels, and the terminal carbohydrate profile in the gill mucus. Overall, greater variations between groups were noted in the immune parameters determined in gill mucus than the equivalent in the serum. In gill mucus, IgM levels and peroxidase, lysozyme, esterase and protease activities were decreased in fish showing longer exposure time to the infection and higher disease severity, then showed a sequential increase after treatment. Results obtained highlight the capacity of gills to elicit a local response to the infection, indicate an impaired immune response at the later stages of the disease, and show partial reestablishment of the host immune status after freshwater treatment. In addition to providing data on the humoral response to AGD, this study increases knowledge on gill mucosal humoral immunity, since some of the parameters were analysed for the first time in gill mucus.


Assuntos
Amebíase/veterinária , Amebozoários/fisiologia , Doenças dos Peixes/imunologia , Imunidade Humoral , Salmo salar , Amebíase/imunologia , Amebíase/parasitologia , Animais , Doenças dos Peixes/parasitologia , Brânquias/imunologia , Brânquias/parasitologia , Estudos Longitudinais
7.
Pathogens ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36014998

RESUMO

Complex gill disorder (CGD) is an important condition in Atlantic salmon aquaculture, but the roles of the putative aetiological agents in the pathogenesis are uncertain. A longitudinal study was undertaken on two salmon farms in Scotland to determine the variations in loads of CGD-associated pathogens (Desmozoon lepeophtherii, Candidatus Branchiomonas cysticola, salmon gill pox virus (SGPV) and Neoparamoeba perurans) estimated by quantitative PCR. In freshwater, Ca. B. cysticola and SGPV were detected in both populations, but all four pathogens were detected on both farms during the marine stage. Candidatus B. cysticola and D. lepeophtherii were detected frequently, with SGPV detected sporadically. In the marine phase, increased N. perurans loads associated significantly (p < 0.05) with increases in semi-quantitative histological gill-score (HGS). Increased Ca. B. cysticola load associated significantly (p < 0.05) with increased HGS when only Farm B was analysed. Higher loads of D. lepeophtherii were associated significantly (p < 0.05) with increased HGS on Farm B despite the absence of D. lepeophtherii-type microvesicles. Variations in SGPV were not associated significantly (p > 0.05) with changes in HSG. This study also showed that water temperature (season) and certain management factors were associated with higher HGS. This increase in histological gill lesions will have a deleterious impact on fish health and welfare, and production performance.

8.
Microorganisms ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946205

RESUMO

Gill disorders have become more prevalent and widespread in finfish aquaculture in recent years. Their aetiology is often considered to be multifactorial. Effective diagnosis, control and prevention are hindered by the lack of standardised methodologies to characterise the aetiological agents, which produce an array of clinical and pathological presentations. The aim of this study was to define a novel gross pathological scoring system suitable for field-based macroscopic assessment of complex or multifactorial gill disease in farmed Atlantic salmon, using samples derived from a gill disease outbreak in Chile. Clinical assessment of gross gill morphology was performed, and gill samples were collected for qPCR and histology. A novel total gill scoring system was developed, which assesses gross pathological changes combining both the presumptive or healed amoebic gill disease (AGD) and the presence of other types of gill lesions. This scoring system offers a standardised approach to characterise the severe proliferative pathologies in affected gills. This total gill scoring system can substantially contribute to the development of robust mitigation strategies and could be used as an indicator trait for incorporating resistance to multifactorial gill disease into breeding goals.

9.
J Vet Diagn Invest ; 32(1): 142-146, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31735129

RESUMO

Desmozoon lepeophtherii is a microsporidian associated with gill disease in farmed Atlantic salmon (Salmo salar). Detection of the parasite in histologic tissue sections is challenging using common histochemical stains given that the small, widely distributed parasite spores typically occur individually or in small clusters. We compared the ability of 4 histologic methods to detect D. lepeophtherii spores in serial sections of Atlantic salmon gill tissue: hematoxylin and eosin (H&E), Gram-Twort (GT), calcofluor white (CW), and immunohistochemistry (IHC). Using CW as a benchmark to calculate a relative ratio, IHC consistently detected more spores than CW (median: 1.3), followed by GT (median: 0.2) and H&E (median: 0.1). IHC detected significantly more spores than GT (p < 0.05) and H&E (p < 0.05), and GT more than H&E (p < 0.05). We found significant underestimation of numbers of microsporidia spores in gill disease in Atlantic salmon using conventional histochemical stains and recommend the use of CW or IHC to detect the parasite in tissue sections.


Assuntos
Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Técnicas Histológicas/veterinária , Microsporídios/isolamento & purificação , Microsporidiose/veterinária , Salmo salar/microbiologia , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/patologia , Técnicas Histológicas/métodos , Técnicas Histológicas/normas , Microsporidiose/diagnóstico , Microsporidiose/microbiologia , Esporos Fúngicos/isolamento & purificação
10.
Sci Rep ; 8(1): 13689, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209326

RESUMO

Amoebic gill disease (AGD) is one of the main diseases affecting Atlantic salmon (Salmo salar L.) mariculture. Hallmarks of AGD are hyperplasia of the lamellar epithelium and increased production of gill mucus. This study investigated the expression of genes involved in mucus secretion, cell cycle regulation, immunity and oxidative stress in gills using a targeted 21-gene PCR array. Gill samples were obtained from experimental and natural Neoparamoeba perurans infections, and sampling points included progressive infection stages and post-freshwater treatment. Up-regulation of genes related to mucin secretion and cell proliferation, and down-regulation of pro-inflammatory and pro-apoptotic genes were associated with AGD severity, while partial restoration of the gill homeostasis was detected post-treatment. Mucins and Th2 cytokines accoun ted for most of the variability observed between groups highlighting their key role in AGD. Two mucins (muc5, muc18) showed differential regulation upon disease. Substantial up-regulation of the secreted muc5 was detected in clinical AGD, and the membrane bound muc18 showed an opposite pattern. Th2 cytokines, il4/13a and il4/13b2, were significantly up-regulated from 2 days post-infection onwards, and changes were lesion-specific. Despite the differences between experimental and natural infections, both yielded comparable results that underline the importance of the studied genes in the respiratory organs of fish, and during AGD progression.


Assuntos
Amoeba/metabolismo , Doenças dos Peixes/metabolismo , Expressão Gênica/fisiologia , Brânquias/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Salmo salar/metabolismo , Animais , Regulação para Baixo/fisiologia , Inflamação/metabolismo , Mucinas , Regulação para Cima/fisiologia
11.
PLoS One ; 6(4): e18529, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490977

RESUMO

BACKGROUND: Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered. CONCLUSIONS: Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future.


Assuntos
Brânquias/lesões , Salmo salar/lesões , Cifozoários , Animais , Aquicultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA