Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 758: 71-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23080145

RESUMO

Anoxia rapidly elicits hyper-excitability and cell death in mammal brain but this is not so in anoxia-tolerant turtle brain where spontaneous electrical activity is suppressed by anoxia (i.e. spike arrest; SA). In anoxic turtle brain extracellular GABA concentrations increase dramatically and impact GABAergic synaptic transmission in a way that results in SA. Here we briefly review what is known about the regulation of glutamatergic signalling during anoxia and investigate the possibility that in anoxic turtle cortical neurons GABA(A/B) receptors play an important role in neuroprotection. Both AMPA and NMDA receptor currents decrease by about 50% in anoxic turtle cerebrocortex and therefore exhibit channel arrest, whereas GABA-A receptor currents increase twofold and increase whole-cell conductance. The increased post synaptic GABA-A receptor current is contrary to the channel arrest hypothesis but it does serve an important function. The reversal potential of the GABA-A receptor (E(GABA)) is only slightly depolarized relative to the resting membrane potential of the neuron and not sufficient to elicit an action potential. Therefore, when GABA-A receptors are activated, membrane potential moves to E(GABA) and prevents further depolarization by glutamatergic inputs during anoxia by a process termed shunting inhibition. Furthermore we discuss the presynaptic role of GABA-B receptors and show that increased endogenous GABA release during anoxia mediates SA by activating both GABA-A and B receptors and that this represents a natural oxygen-sensitive adaptive mechanism to protect brain from anoxic injury.


Assuntos
Córtex Cerebral/fisiologia , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Transmissão Sináptica/fisiologia , Tartarugas/fisiologia , Animais , Ácido Glutâmico/metabolismo , Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia , Ácido gama-Aminobutírico/metabolismo
2.
Neuroscience ; 237: 243-54, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23384611

RESUMO

In response to low ambient oxygen levels the western painted turtle brain undergoes a large depression in metabolic rate which includes a decrease in neuronal action potential frequency. This involves the arrest of N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) currents and paradoxically an increase in γ-aminobutyric acid receptor (GABAR) currents in turtle cortical neurons. In a search for other oxygen-sensitive channels we discovered a Ca(2+)-activated K(+) channel (K(Ca)) that exhibited a decrease in open time in response to anoxia. Single-channel recordings of K(Ca) activity were obtained in cell-attached and excised inside-out patch configurations from neurons in cortical brain sheets bathed in either normoxic or anoxic artificial cerebrospinal fluid (aCSF). The channel has a slope conductance of 223pS, is activated in response to membrane depolarization, and is controlled in a reversible manner by free [Ca(2+)] at the intracellular membrane surface. In the excised patch configuration anoxia had no effect on K(Ca) channel open probability (P(open)); however, in cell-attached mode, there was a reversible fivefold reduction in P(open) (from 0.5 ± 0.05 to 0.1 ± 0.03) in response to 30-min anoxia. The inclusion of the potent protein kinase C (PKC) inhibitor chelerythrine prevented the anoxia-mediated decrease in P(open) while drip application of a phorbol ester PKC activator decreased P(open) during normoxia (from normoxic 0.4 ± 0.05 to phorbol-12-myristate-13-acetate (PMA) 0.1 ± 0.02). Anoxia results in a slight depolarization of turtle pyramidal neurons (∼8 mV) and an increase in cytosolic [Ca(2+)]; therefore, K(Ca) arrest is likely important to prevent Ca(2+) activation during anoxia and to reduce the energetic cost of maintaining ion gradients. We conclude that turtle pyramidal cell Ca(2+)-activated K(+) channels are oxygen-sensitive channels regulated by cytosolic factors and are likely the reptilian analog of the mammalian large conductance Ca(2+)-activated K(+) channels (BK channels).


Assuntos
Córtex Cerebral/fisiologia , Ativação do Canal Iônico/fisiologia , Oxigênio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Probabilidade , Tartarugas/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Biofísica , Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipóxia/fisiopatologia , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Oxigênio/farmacologia , Técnicas de Patch-Clamp , Ésteres de Forbol/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia , Valina/análogos & derivados , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA