RESUMO
Despite the significance of singlet oxygen (1O2) in several biological, chemical, and energy storage systems, its voltammetric reduction at an electrode remains unreported. We address this issue using nanogap scanning electrochemical microscopy (SECM) in substrate-generation/tip-collection mode. Our investigation reveals a reductive process on the SECM tip at -1.0 V (vs Fc+/Fc) during the breakdown of the Li2CO3 substrate in deuterated acetonitrile. Notably, this value is approximately 0.9 V more positive than the reduction potential of triplet oxygen (3O2), consistent with thermodynamic estimates for the energy of the formation of 1O2. This finding holds significant implications for understanding the reaction mechanisms involving 1O2 in nonaqueous media.
RESUMO
Soluble redox-active polymers (RAPs) enable size-exclusion nonaqueous redox flow batteries (NaRFBs) which promise high energy density. Pendants along the RAPs not only store charge but also engage in electron transfer to varying extents based on their designs. Here, we explore these phenomena in Metal-containing Redox Active Polymers (M-RAPs, M = Ru, Fe, Co). We assess by using cyclic voltammetry and chronoamperometry with ultramicroelectrodes the current response to electrolyte concentration spanning 3 orders of magnitude. Currents scaled as Ru-RAP > Fe-RAP â« Co-RAP, consistent with electron self-exchange trends in the small molecule analogues of the MII/III redox pair. Varying the ionic strength of the electrolyte also revealed nonmonotonic behavior, evidencing the impact of polyelectrolytic dynamics on M-RAP redox response. We developed a model to account for the behavior by combining kinetic Monte Carlo and Brownian dynamics near a boundary representing an electrode. While 1D pendant-to-pendant charge transfer along the chain is not a strong function of electrolyte concentration, the microstructure of the RAP at different electrolyte concentrations is decisively impacted, yielding qualitative trends to those observed experimentally. M-RAP size-exclusion NaRFBs using a poly viologen as negolyte varied in average potential with â¼1.54 V for Ru-RAP, â¼1.37 V for Fe-RAP, and â¼0.52 V for Co-RAP. Comparison of batteries at their optimal and suboptimal solution conditions as gauged from analytical experiments showed clear correlations in performance. This work provides a blueprint for understanding the factors underpinning charge transfer in solutions of RAPs for batteries and beyond.
RESUMO
The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm-1 NO2 stretches for 4-NBD and the 1240 cm-1 C-C, C-C-H, and N-È® stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.
RESUMO
Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents. The SPWs were determined by employing cyclic voltammetry, attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and surface plasmon resonance (SPR). The electrochemical and spectroscopic findings concluded that all the aromatic SAMs used displayed similar trends and SPWs. In aqueous systems, the SPW lies between the reductive desorption and oxidative desorption, with pH being the decisive factor affecting the range of the SPW, with the widest SPW observed at pH 1. In the non-aqueous electrolytes, the desorption of SAMs was observed to be slow and progressive. The polarity of the solvent was the main factor in determining the SPW. The lower the polarity of the solvent, the larger the SPW, with 1-butanol displaying the widest SPW. This work showcases the power of spectroelectrochemical analysis and provides ample future directions for the use of non-polar solvents to increase SAM stability in electrochemical applications.
RESUMO
Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 µM) and spheroids (IC50 3D: 16.3 ± 3.1 µM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 µM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 µM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 µM, indicating both anticancer and antimetastatic effects.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Humanos , Adulto Jovem , Cobre/farmacologia , Ligantes , Osteossarcoma/tratamento farmacológicoRESUMO
Photoelectrochemical (PEC) conversion is a promising way to use methane (CH4) as a chemical building block without harsh conditions. However, the PEC conversion of CH4 to value-added chemicals remains challenging due to the thermodynamically favorable overoxidation of CH4. Here, we report WO3 nanotube (NT) photoelectrocatalysts for PEC CH4 conversion with high liquid product selectivity through defect engineering. By tuning the flame reduction treatment, we carefully controlled the oxygen vacancies of WO3 NTs. The optimally reduced WO3 NTs suppressed overoxidation of CH4 showing a high total C1 liquid selectivity of 69.4% and a production rate of 0.174 µmol cm-2 h-1. Scanning electrochemical microscopy revealed that oxygen vacancies can restrain the production of hydroxyl radicals, which, in excess, could further oxidize C1 intermediates to CO2. Additionally, band diagram analysis and computational studies elucidated that oxygen vacancies thermodynamically suppress overoxidation. This work introduces a strategy for understanding and controlling the selectivity of photoelectrocatalysts for direct conversion of CH4 to liquids.
RESUMO
Here, we develop and show the use of an open-source Python library to control commercial potentiostats. It standardizes the commands for different potentiostat models, opening the possibility to perform automated experiments independently of the instrument used. At the time of this writing, we have included potentiostats from CH Instruments (models 1205B, 1242B, 601E, and 760E) and PalmSens (model Emstat Pico), although the open-source nature of the library allows for more to be included in the future. To showcase the general workflow and implementation of a real experiment, we have automated the Randles-SevciÌk methodology to determine the diffusion coefficient of a redox-active species in solution using cyclic voltammetry. This was accomplished by writing a Python script that includes data acquisition, data analysis, and simulation. The total run time was 1 min and 40 s, well below the time it would take even an experienced electrochemist to apply the methodology in a traditional manner. Our library has potential applications that expand beyond the automation of simple repetitive tasks; for example, it can interface with peripheral hardware and well-established third-party Python libraries as part of a more complex and intelligent setup that relies on laboratory automation, advanced optimization, and machine learning.
RESUMO
Graphitic carbon electrodes are central to many electrochemical energy storage and conversion technologies. Probing the behavior of molecular species at the electrochemical interfaces they form is paramount to understanding redox reaction mechanisms. Combining surface-enhanced Raman scattering (SERS) with electrochemical methods offers a powerful way to explore such mechanisms, but carbon itself is not a SERS activating substrate. Here, we report on a hybrid substrate consisting of single- or few-layer graphene sheets deposited over immobilized silver nanoparticles, which allows for simultaneous SERS and electrochemical investigation. To demonstrate the viability of our substrate, we adsorbed anthraquinone-2,6-disulfonate to graphene and studied its redox response simultaneously using SERS and cyclic voltammetry in acidic solutions. We identified spectral changes consistent with the reversible redox of the quinone/hydroquinone pair. The SERS intensities on bare silver and hybrid substrates were of the same order of magnitude, while no discernible signals were observed over bare graphene, confirming the SERS effect on adsorbed molecules. This work provides new prospects for exploring and understanding electrochemical processes in situ at graphitic carbon electrodes.
RESUMO
Recently, non-Faradaic effects were used to modify the electronic structure and reactivity of electrode-bound species. We hypothesize that these electrostatic perturbations could influence the chemical reactivity of electrolyte species near an electrode in the absence of Faradaic electron transfer. A prime example of non-Faradaic effects is acid-base dissociation near an interface. Here, we probed the near-electrode dissociation of N-heterocycle-BF3 Lewis adducts upon electrode polarization, well outside of the redox potential window of the adducts. Using scanning electrochemical microscopy and confocal fluorescence spectroscopy, we detected a potential-dependent depletion of the adduct near the electrode. We propose an electro-inductive effect where a more positive potential leads to electron withdrawal on the N-heterocycle. This study takes a step forward in the use of electrostatics at electrochemical interfaces for field-driven electrocatalytic and electro-synthetic processes.
RESUMO
The hydroxyl radical (â¢OH) is one of the most attractive reactive oxygen species due to its high oxidation power and its clean (photo)(electro)generation from water, leaving no residues and creating new prospects for efficient wastewater treatment and electrosynthesis. Unfortunately, in situ detection of â¢OH is challenging due to its short lifetime (few ns). Using lifetime-extending spin traps, such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to generate the [DMPO-OH]⢠adduct in combination with electron spin resonance (ESR), allows unambiguous determination of its presence in solution. However, this method is cumbersome and lacks the necessary sensitivity and versatility to explore and quantify â¢OH generation dynamics at electrode surfaces in real time. Here, we identify that [DMPO-OH]⢠is redox-active with E0 = 0.85 V vs Ag|AgCl and can be conveniently detected on Au and C ultramicroelectrodes. Using scanning electrochemical microscopy (SECM), a four-electrode technique capable of collecting the freshly generated [DMPO-OH]⢠from near the electrode surface, we detected its generation in real time from operating electrodes. We also generated images of [DMPO-OH]⢠production and estimated and compared its generation efficiency at various electrodes (boron-doped diamond, tin oxide, titanium foil, glassy carbon, platinum, and lead oxide). Density functional calculations, ESR measurements, and bulk calibration using the Fenton reaction helped us unambiguously identify [DMPO-OH]⢠as the source of redox activity. We hope these findings will encourage the rapid, inexpensive, and quantitative detection of â¢OH for conducting informed explorations of its role in mediated oxidation processes at electrode surfaces for energy, environmental, and synthetic applications.
Assuntos
Radical Hidroxila , Platina , Radical Hidroxila/química , Espécies Reativas de Oxigênio , Microscopia Eletroquímica de Varredura , Titânio , Boro , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Eletrodos , Água , Carbono , Diamante , Radicais Livres , Marcadores de SpinRESUMO
Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N-carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials.
Assuntos
Aminoácidos/química , Anidridos/química , Peptídeos , Polimerização , Cinética , Cloreto de Metileno/química , Modelos Biológicos , Peso Molecular , Biossíntese Peptídica , Peptídeos/síntese química , Peptídeos/química , Água/químicaRESUMO
We examine relationships between H2O2 and H2O formation on metal nanoparticles by the electrochemical oxygen reduction reaction (ORR) and the thermochemical direct synthesis of H2O2. The similar mechanisms of such reactions suggest that these catalysts should exhibit similar reaction rates and selectivities at equivalent electrochemical potentials (µÌ i), determined by reactant activities, electrode potential, and temperature. We quantitatively compare the kinetic parameters for 12 nanoparticle catalysts obtained in a thermocatalytic fixed-bed reactor and a ring-disk electrode cell. Koutecky-Levich and Butler-Volmer analyses yield electrochemical rate constants and transfer coefficients, which informed mixed-potential models that treat each nanoparticle as a short-circuited electrochemical cell. These models require that the hydrogen oxidation reaction (HOR) and ORR occur at equal rates to conserve the charge on nanoparticles. These kinetic relationships predict that nanoparticle catalysts operate at potentials that depend on reactant activities (H2, O2), H2O2 selectivity, and rate constants for the HOR and ORR, as confirmed by measurements of the operating potential during the direct synthesis of H2O2. The selectivities and rates of H2O2 formation during thermocatalysis and electrocatalysis correlate across all catalysts when operating at equivalent µÌ i values. This analysis provides quantitative relationships that guide the optimization of H2O2 formation rates and selectivities. Catalysts achieve the greatest H2O2 selectivities when they operate at high H atom coverages, low temperatures, and potentials that maximize electron transfer toward stable OOH* and H2O2* while preventing excessive occupation of O-O antibonding states that lead to H2O formation. These findings guide the design and operation of catalysts that maximize H2O2 formation, and these concepts may inform other liquid-phase chemistries.
RESUMO
Choosing reference electrodes for nonaqueous electrochemical measurements, especially in energy storage research, is challenging due to lengthy experiments (>1 day), the lack of alternatives to the commonly used Ag/Ag+ reference electrode (RE), the introduction of junction potentials, and the possibility of sample contamination. Often, quasi-reference electrodes (QREs) such as Ag wires and Li metal strips are used. However, small changes in electrolyte composition can cause large potential drifts, and their surfaces may be reactive to the solution. Here, we propose an alternative QRE based on polypyrrole electrodeposited on Pt wire (PPyQRE) encased in a glass tube with the open end sealed with commercial frits. While freestanding PPyQRE wires have been reported in the literature, simple encasing of the PPyQRE overcomes the above-mentioned drawbacks of QREs while providing a reliable reference potential that is closer to the performance of an RE. During cyclic voltammetric and bulk electrolysis testing of a redox mediator in solution, the encased PPyQRE exhibited stable reference potentials over multiple charge/discharge cycles with minimal drift (â¼5 mV) after â¼2.25 days of operation. We also tested the reliability of our reference during the testing of multilayer graphene Li-ion anodes, which often involve cycling samples at highly reducing potentials (<-3 V vs Fc/Fc+) over long durations (>1 day). In the same testing conditions, the Ag/Ag+ electrode led to observable Ag deposits on the graphene and large potential drifts (â¼50 mV), while the PPyQRE exhibited no measurable drift and revealed changes in voltammetric features that were obscured by reference drift when using Ag/Ag+. Minor reference drifts of â¼30 mV over long usage of the PPyQRE (â¼2 months) can be addressed by calibration with a ferrocene couple at the end of experiments. These results highlight the advantages of using an encased PPyQRE as a simple and practical reference electrode for electrochemical measurements in the field of nonaqueous energy storage research.
RESUMO
Understanding and controlling chemical dynamics at electrode interfaces is key to electrochemical applications in sensing, electrocatalysis, and energy storage. Here, we introduce colocalized surface-enhanced Raman scattering-scanning electrochemical microscopy (SERS-SECM) as a multimodal tool able to simultaneously probe and affect electrochemical interfaces in real time. As a model system to demonstrate SERS-SECM, we used a self-assembled monolayer of 4-mercaptopyridine (4MPy), a pH sensitive Raman indicator, anchored to silver nanoparticles as a substrate. We modulated the local pH at the surface with chronoamperometry, inducing the hydrogen evolution reaction (HER) at the SECM tip and observed subsequent Raman peak height changes in the 4MPy. We then performed cyclic voltammetry of HER at the SECM tip while measuring SERS spectra every 200 ms to highlight the technique's real-time capabilities. Our results show the capability to sensitively interrogate and trigger chemical/electrochemical dynamic surface phenomena. We hope SERS-SECM will provide insight on the link between heterogeneous and homogeneous reactivity at electrochemical interfaces.
Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Concentração de Íons de Hidrogênio , Microscopia Eletroquímica de Varredura , PrataRESUMO
The predictive synthesis of metal nanocrystals with desired structures relies on the precise control of the crystal formation process. Using a capping ligand is an effective method to affect the reduction of metal ions and the formation of nanocrystals. However, predictively synthesizing nanostructures has been difficult to achieve using conventional capping ligands. DNA, as a class of the promising biomolecular capping ligands, has been used to generate sequence-specific morphologies in various metal nanocrystals. However, mechanistic insight into the DNA-mediated nanocrystal formation remains elusive due to the lack of quantitative experimental evidence. Herein, we quantitatively analyzed the precise control of DNA over Ag+ reduction and the structures of resulting Au-Ag core-shell nanocrystals. We derived the equilibrium binding constants between DNA and Ag+, the kinetic rate constants of sequence-specific Ag+ reduction pathways, and the percentage of active surface sites remaining on the nanocrystals after DNA passivation. These three synergistic factors influence the nucleation and growth process both thermodynamically and kinetically, which contributed to the morphological evolution of Au-Ag nanocrystals synthesized with different DNA sequences. This study demonstrates the potential of using functional DNA sequences as a versatile and tunable capping ligand system for the predictable synthesis of metal nanostructures.
RESUMO
The synthesis of conjugated Möbius molecules remains elusive since twisted and macrocyclic structures are low-entropy species sporting their own synthetic challenges. Here we report the synthesis of a Möbius macrocycle in 84% yield via alkyne metathesis of 2,13-bis(propynyl)[5]helicene. MALDI-MS, NMR spectroscopy, and X-ray diffraction indicated a trimeric product of twofold symmetry with PPM/MMP configurations in the helicene subunits. Alternatively, a threefold-symmetric PPP/MMM structure was determined by DFT calculations to be more thermodynamically stable, illustrating remarkable kinetic selectivity for this alkyne metathesis cyclooligomerization. Computational studies provided insight into the kinetic selectivity, demonstrating a difference of 15.4 kcal/mol between the activation barriers for the PPM/MMP and PPP/MMM diastereodetermining steps. Computational (ACID and EDDB) and experimental (UV-vis and fluorescence spectroscopy and cyclic voltammetry) studies revealed weak conjugation between the alkyne and adjacent helicene groups as well as the lack of significant global aromaticity. Separation of the PPM and MMP enantiomers was achieved via chiral HPLC at the analytical scale.
RESUMO
Atomically thin graphene electrodes enable the modulation of interfacial reactivity by means of underlying substrate effects. Here we show that plasmonic excitation of microscopic arrays composed of 50 nm Au nanoparticles situated underneath a graphene interface results in localized enhancements on the electrochemical readout. We used scanning electrochemical microscopy (SECM) in the feedback and H2O2 collection modes to identify the role of the generated plasmons on the electrochemical response. Using electrochemical imaging, supported by finite-element method simulations, we confirmed that a temperature rise of up to â¼30 K was responsible for current enhancements observed for mass transfer- limited reactions. On single-layer graphene (SLG) we observed a shift in the onset of H2O2 generation which we traced back to photothermal induced kinetic changes, raising ko' from 1.1 × 10-8 m/s to 2.2 × 10-7 m/s. Thicker 10-layer graphene electrodes displayed only a small kinetic difference with respect to SLG, suggesting that photothermal processes, in contrast to hot carriers, are the main contributor to the observed changes in interfacial reactivity upon illumination. SECM is demonstrated to be a powerful technique for elucidating thermal contributions to reactive enhancements, and presents a convenient platform for studying sublayer and temperature-dependent phenomena over individual sites on electrodes.
RESUMO
Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their properties is still limited due to their heterogenous structure, dynamic nature, and lack of analytical techniques to probe their electronic and ionic properties in situ. In this study, we used a multi-functional scanning electrochemical microscopy (SECM) technique based on an amperometric ion-selective mercury disc-well (HgDW) probe for spatially-resolving changes in interfacial Li+ during solid electrolyte interphase (SEI) formation and for tracking its relationship to the electronic passivation of the interphase. We focused on multi-layer graphene (MLG) as a model graphitic system and developed a method for ion-flux mapping based on pulsing the substrate at multiple potentials with distinct behavior (e.g. insertion-deinsertion). By using a pulsed protocol, we captured the localized uptake of Li+ at the forming SEI and during intercalation, creating activity maps along the edge of the MLG electrode. On the other hand, a redox probe showed passivation by the interphase at the same locations, thus enabling correlations between ion and electron transfer. Our analytical method provided direct insight into the interphase formation process and could be used for evaluating dynamic interfacial phenomena and improving future energy storage technologies.
RESUMO
Systematically tuning the conductivity of metal-organic frameworks (MOFs) is key to synergizing their attractive synthetic control and porosity with electrochemical attributes useful in energy and sensing technologies. A priori control of charge transfer is possible by exploiting the solid-solution properties of MOFs together with electronic self-exchange enabled by redox pendants. Here we introduce a new strategy for preparing redox-active MOF thin-film electrodes with finely tuned redox pendant content. Varying the ratios of alkyl-ferrocene containing redox-active and inactive links during MOF synthesis enabled the fabrication of electrodes with tunable redox conductivity. The prepared MOF electrodes display maximum electron conductivity of 1.10 mS m-1, with crystallographic and electrochemical stability upon thousands of redox cycles. Electroanalytical studies demonstrated that the conductivity follows solution-like diffusion-controlled behavior with nonlinear electron diffusion coefficients consistent with charge hopping and percolation models of spatially fixed redox centers. Our studies create new prospects in the design and synthesis of redox-active MOFs with targeted properties for the design of advanced electrochemical devices.
RESUMO
O2 activation at nonheme iron centers is a common motif in biological systems. While synthetic models have provided numerous insights into the reactivity of high-valent iron-oxo complexes related to biological processes, the majority of these complexes are synthesized using alternative oxidants. This report describes O2 activation by an iron(II)-triflate complex of the imino-functionalized tris(pyrrol-2-ylmethyl)amine ligand framework, H3[N(piCy)3]. Initial reaction conditions result in the formation of a mixture of oxidation products including terminal iron(III)-oxo and iron(III)-hydroxo complexes. The relevance of these species to the O2 activation process is demonstrated through reactivity studies and electrochemical analysis of the iron(III)-oxo complex.