Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(8): 999-1006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202488

RESUMO

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed 'liquid-like thermal conduction' picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m-1 K-1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

2.
Inorg Chem ; 55(3): 1324-32, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26756498

RESUMO

With appropriate doping or processing, Li7La3Zr2O12 (LLZO) is an excellent candidate to be used in Li batteries either as a solid electrolyte or as a separator between the Li anode and a liquid electrolyte. For both uses, the reactivity with water either from the air or in aqueous media is a matter of interest. We address here the structural changes undergone by LLZO as a result of H(+)/Li(+) exchange and relate them with the amount of H content and atomic distribution. Neutron diffraction is performed to elucidate Li and H location. Two different cubic phases derive from LLZO through H(+)/Li(+) exchange: Deep hydration up to 150 °C yields a noncentrosymmetric I4̅3d phase in which octahedral Li ions are exchanged by H ions, tetrahedral Li ions split into two sites with very different occupancies, and H ions form O4H4 entities around the less occupied tetrahedral site. Annealing above 300 °C results in a centrosymmetric Ia3̅d phase with lower H content in which Li ions occupy the usual sites of the cubic garnets and H ions occupy a split pseudooctahedral site. The centrosymmetric or noncentrosymmetric character is determined by the temperature at which exchange is performed and the H content. Both factors are not independent: at low temperature, the high H content favors H ordering around the vacant tetrahedra, while low H content and higher mobility at 350 °C lead to a disordered configuration of Li and H ions. The deeply hydrated garnets are stable up to at least 300 °C and also upon aging at room temperature.

3.
Phys Chem Chem Phys ; 18(44): 30407-30414, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27781223

RESUMO

Synchrotron X-ray and neutron diffraction experiments at various temperatures, down to 3 K, along with ab initio calculations, are carried out to elucidate the magnetic order of layered ß-cobalt-hydroxide. This combination of techniques allows for the unambiguous assignment of the magnetic structure of this material. Our results confirm that below the Néel temperature high-spin cobalt centers are ferromagnetically coupled within a layer, and antiferromagnetically coupled across layers (magnetic propagation vector k = (0,0,½)), in agreement with the indirect interpretation based on magnetic susceptibility measurements. A paramagnetic/antiferromagnetic transition is observed at around 15 K. Moreover, the thermal expansion behavior along the c-lattice direction, perpendicular to the layers, shows an inflection slightly above this temperature, at around 30 K. The neutron diffraction patterns and the non-collinear DFT+U calculations indicate that the magnetization forms an angle of about 35° with the cobalt planes. In particular, for an isolated ferromagnetic layer, the electronic structure calculations reveal sharp cusps on the potential energy surface when the spins point parallel or perpendicular to the planes, suggesting that the ferromagnetic superexchange mechanism is strongly sensitive to the orientation of the magnetic moment.

4.
Inorg Chem ; 54(15): 7424-32, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26172431

RESUMO

Deprotonation of the ionogenic tetradentate ligand 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine [H2bipy(ttr)2] in the presence of Fe(II) in solution has afforded an anionic mononuclear complex and a neutral two-dimensional coordination polymer formulated as, respectively, NEt3H{Fe[bipy(ttr)2][Hbipy(ttr)2]}·3MeOH (1) and {Fe[bipy(ttr)2]}n (2). The anions [Hbipy(ttr)2](-) and [bipy(ttr)2](2-) embrace the Fe(II) centers defining discrete molecular units 1 with the Fe(II) ion lying in a distorted bisdisphenoid dodecahedron, a rare example of octacoordination in the coordination environment of this cation. The magnetic behavior of 1 shows that the Fe(II) is high-spin, and its Mössbauer spectrum is characterized by a relatively large average quadrupole splitting, ΔEQ = 3.42 mm s(-1). Compound 2 defines a strongly distorted octahedral environment for Fe(II) in which one [bipy(ttr)2](-) anion coordinates the equatorial positions of the Fe(II) center, while the axial positions are occupied by peripheral N-tetrazole atoms of two adjacent {Fe[bipy(ttr)2]}(0) moieties thereby generating an infinite double-layer sheet. Compound 2 undergoes an almost complete spin crossover transition between the high-spin and low-spin states centered at about 221 K characterized by an average variation of enthalpy and entropy ΔH(av) = 8.27 kJ mol(-1), ΔS(av) = 37.5 J K(-1) mol(-1), obtained from calorimetric DSC measurements. Photomagnetic measurements of 2 at 10 K show an almost complete light-induced spin state trapping (LIESST) effect which denotes occurrence of antiferromagnetic coupling between the excited high-spin species and TLIESST = 52 K. The crystal structure of 2 has been investigated in detail at various temperatures and discussed.

5.
Adv Sci (Weinh) ; 9(24): e2202253, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35712765

RESUMO

The increasing environmental protection demand has prompted the development of passive thermal regulation systems that reduce temperature fluctuations in buildings. Here, it is demonstrated that the heat generated by the sun can trigger a spin crossover (SCO) in a molecule-base material, resulting in a concomitant color variation (from pink to white) and a phase transition. This leads to a cooling effect with respect to other thermochromic materials. In addition, when the material is cooled, a dampening of the temperature decrease is produced. Therefore, these materials can potentially be implemented for passive temperature control in buildings. Furthermore, SCO materials are remarkably stable upon cycling and highly versatile, which allows for the design of compounds with properties tailored for the desired climatic conditions and comfortable temperature.

6.
Artigo em Inglês | MEDLINE | ID: mdl-24892590

RESUMO

The effect of pressure (up to 0.17 GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ↔ low-spin transition, centred at ca 180 K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140 K GPa(-1). The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure-temperature (P-T) range studied. The main structural consequence of the high-spin to low-spin transition is the contraction of the distorted octahedral [FeN6] chromophores, being more marked in the axial positions (occupied by the pmd units), than in the equatorial positions (occupied by four [Ag(CN)2](-) bridging ligands).

7.
J Phys Condens Matter ; 22(25): 256001, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21393809

RESUMO

The reported observation of two anomalies in the intensity of the magnon Raman peaks of BiFeO3 at 140 and 200 K (Singh et al 2008 J. Phys.: Condens. Mater 20 252203; Cazayous et al 2008 Phys. Rev. Lett. 101 037601) led to the hypothesis that such anomalies might originate from a spin reorientation transition. In order to test this hypothesis, we have used temperature-dependent neutron diffraction to track the evolution of the magnetic configuration in single crystals of BiFeO3. Our results indicate that there is no average reorientation of the spins. This suggests that the magnon anomalies may instead be related to the freezing of modes that do not alter the average projection of the spins over the plane of the cycloid, as also reported for multiferroic TbMnO3 (Senff et al 2006 J. Phys.: Condens. Mater 18 2069).

8.
Dalton Trans ; (5): 642-9, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18217120

RESUMO

A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer [Fe(pmd)(2)[Cu(CN)(2)](2)] is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light (lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 A(3) which is lower than the usually observed value of around 25-30 A(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 A. The structural data of the irradiated state indicate that the high spin state is well induced since the cell parameters are consistent with the data at 180 K. Calorimetric and photo-calorimetric experiments have also been performed. The entropy content for the thermal spin transition, DeltaS = 35-37 J mol(-1) K(-1) lies in the lowest range of the typical values and correlates with the low volume cell contraction. The combination of the crystallographic and calorimetric data predicts, in accordance with a mean-field approach, a linear pressure dependence of the critical temperature with a slope of 302 K GPa(-1). Magnetic measurements under pressure reveal an anomalous behaviour since the critical temperature and hysteresis do not change up to 0.22 GPa but an apparent linear dependence is obtained for higher pressures (up to 0.8 GPa) with a slope two times higher than the mean-field estimation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA