Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem ; 102: 117671, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452407

RESUMO

The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Feminino , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais
2.
Sci Rep ; 14(1): 8991, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637583

RESUMO

COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Peptidomiméticos , Humanos , SARS-CoV-2/metabolismo , Peptidomiméticos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Aminoácidos , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/química
3.
An. acad. bras. ciênc ; 89(3): 1403-1415, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886744

RESUMO

ABSTRACT This study presents the bioreduction of six β-ketoesters by whole cells of Kluyveromyces marxianus and molecular investigation of a series of 13 β-ketoesters by hologram quantitative structure-activity relationship (HQSAR) in order to relate with conversion and enantiomeric excess of β-stereogenic-hydroxyesters obtained by the same methodology. Four of these were obtained as (R)-configuration and two (S)-configuration, among them four compounds exhibited >99% enantiomeric excess. The β-ketoesters series LUMO maps showed that the β-carbon of the ketoester scaffold are exposed to undergo nucleophilic attack, suggesting a more favorable β-carbon side to enzymatic reduction based on adopted molecular conformation at the reaction moment. The HQSAR method was performed on the β-ketoesters derivatives separating them into those provided predominantly (R)- or (S)-β-hydroxyesters. The HQSAR models for both (R)- and (S)-configuration showed high predictive capacity. The HQSAR contribution maps suggest the importance of β-ketoesters scaffold as well as the substituents attached therein to asymmetric reduction, showing a possible influence of the ester group carbonyl position on the molecular conformation in the enzyme catalytic site, exposing a β-carbon side to the bioconversion to (S)- and (R)-enantiomers.


Assuntos
Kluyveromyces/metabolismo , Ésteres/química , Cetonas/química , Oxirredução , Biotransformação , Estrutura Molecular
4.
Rev. bras. farmacogn ; 22(4): 881-888, jul.-ago. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-640356

RESUMO

HIV-1 reverse transcriptase (HIV-1 RT) is a therapeutic target for the treatment of HIV-positive individuals or those already showing AIDS symptoms. In this perspective, the identification of new inhibitors for this enzyme is of great importance in view of the growing viral resistance to the existing treatments. This resistance has compromised the quality of life of those infected with multidrug-resistant strains, whose treatment options are already limited, putting at risk these individuals lives. The literature has recognized marine organisms and their products as natural sources for the identification of new therapeutic options for different pathologies. In this brief review, we consider the structure of HIV-1 RT and its most common inhibitors, as well as some marine diterpenes originally reported as HIV-1 RT inhibitors to encourage the identification and development of new marine antiviral prototypes.

5.
Rev. bras. farmacogn ; 22(1): 40-44, Jan.-Feb. 2012. tab
Artigo em Inglês | LILACS | ID: lil-607595

RESUMO

Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L.) essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid) with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

6.
In. Genovese, Walter Joäo. Metodologia do exame clínico em odontologia. Säo Paulo, Pancast, 2 ed., aum; 1992. p.211-41.
Monografia em Português | LILACS, BBO - odontologia (Brasil) | ID: lil-197431
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA