Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(6): 946-957, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307819

RESUMO

The nature of the immune responses associated with COVID-19 pathogenesis and disease severity, as well as the breadth of vaccine coverage and duration of immunity, is still unclear. Given the unpredictability for developing a severe/complicated disease, there is an urgent need in the field for predictive biomarkers of COVID-19. We have analyzed IgG Fc N-glycan traits of 82 SARS-CoV-2+ unvaccinated patients, at diagnosis, by nano-LC-ESI-MS. We determined the impact of IgG Fc glyco-variations in the induction of NK cells activation, further evaluating the association between IgG Fc N-glycans and disease severity/prognosis. We found that SARS-CoV-2+ individuals display, at diagnosis, variations in the glycans composition of circulating IgGs. Importantly, levels of galactose and sialic acid structures on IgGs are able to predict the development of a poor COVID-19 disease. Mechanistically, we demonstrated that a deficiency on galactose structures on IgG Fc in COVID-19 patients appears to induce NK cells activation associated with increased release of IFN-γ and TNF-α, which indicates the presence of pro-inflammatory immunoglobulins and higher immune activation, associated with a poor disease course. This study brings to light a novel blood biomarker based on IgG Fc glycome composition with capacity to stratify patients at diagnosis.


Assuntos
COVID-19 , Biomarcadores , COVID-19/diagnóstico , Teste para COVID-19 , Galactose , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Polissacarídeos , SARS-CoV-2 , Índice de Gravidade de Doença
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269829

RESUMO

The multi-organ disease cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a cAMP regulated chloride (Cl-) and bicarbonate (HCO3-) ion channel expressed at the apical plasma membrane (PM) of epithelial cells. Reduced CFTR protein results in decreased Cl- secretion and excessive sodium reabsorption in epithelial cells, which consequently leads to epithelial dehydration and the accumulation of thick mucus within the affected organs, such as the lungs, pancreas, gastrointestinal (GI) tract, reproductive system and sweat glands. However, CFTR has been implicated in other functions besides transporting ions across epithelia. The rising number of references concerning its association to actin cytoskeleton organization, epithelial cell junctions and extracellular matrix (ECM) proteins suggests a role in the formation and maintenance of epithelial apical basolateral polarity. This review will focus on recent literature (the last 10 years) substantiating the role of CFTR in cell junction formation and actin cytoskeleton organization with its connection to the ECM.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Bicarbonatos/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo
3.
Front Mol Biosci ; 10: 1155705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006619

RESUMO

Most of the 2,100 CFTR gene variants reported to date are still unknown in terms of their disease liability in Cystic Fibrosis (CF) and their molecular and cellular mechanism that leads to CFTR dysfunction. Since some rare variants may respond to currently approved modulators, characterizing their defect and response to these drugs is essential for effective treatment of people with CF (pwCF) not eligible for the current treatment. Here, we assessed how the rare variant, p.Arg334Trp, impacts on CFTR traffic and function and its response to existing CFTR modulators. To this end, we performed the forskolin-induced swelling (FIS) assay on intestinal organoids from 10 pwCF bearing the p.Arg334Trp variant in one or both alleles of the CFTR gene. In parallel, a novel p.Arg334Trp-CFTR expressing CFBE cell line was generated to characterize the variant individually. Results show that p.Arg334Trp-CFTR does not significantly affect the plasma membrane traffic of CFTR and evidences residual CFTR function. This CFTR variant is rescued by currently available CFTR modulators independently of the variant in the second allele. The study, predicting clinical benefit for CFTR modulators in pwCF with at least one p.Arg334Trp variant, demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs for pwCF carrying rare CFTR variants. We recommend that this personalized approach should be considered for drug reimbursement policies by health insurance systems/national health services.

4.
Microbiol Spectr ; 11(1): e0225622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475892

RESUMO

The reprogramming of cellular metabolism of immune cells is an essential process in the regulation of antifungal immune responses. In particular, glucose metabolism has been shown to be required for protective immunity against infection with Aspergillus fumigatus. However, given the intricate cross talk between multiple metabolic networks and signals, it is likely that cellular metabolic pathways other than glycolysis are also relevant during fungal infection. In this study, we demonstrate that glutamine metabolism is required for the activation of macrophage effector functions against A. fumigatus. Glutamine metabolism was found to be upregulated early after fungal infection and glutamine depletion or the pharmacological inhibition of enzymes involved in its metabolism impaired phagocytosis and the production of both proinflammatory and T-cell-derived cytokines. In an in vivo model, inhibition of glutaminase increased susceptibility to experimental aspergillosis, as revealed by the increased fungal burden and inflammatory pathology, and the defective cytokine production in the lungs. Moreover, genetic variants in glutamine metabolism genes were found to regulate cytokine production in response to A. fumigatus stimulation. Taken together, our results demonstrate that glutamine metabolism represents an important component of the immunometabolic response of macrophages against A. fumigatus both in vitro and in vivo. IMPORTANCE The fungal pathogen Aspergillus fumigatus can cause severe and life-threatening forms of infection in immunocompromised patients. The reprogramming of cellular metabolism is essential for innate immune cells to mount effective antifungal responses. In this study, we report the pivotal contribution of glutaminolysis to the host defense against A. fumigatus. Glutamine metabolism was essential both in vitro as well as in in vivo models of infection, and genetic variants in human glutamine metabolism genes regulated cytokine production in response to fungal stimulation. This work highlights the relevance of glutaminolysis to the pathogenesis of aspergillosis and supports a role for interindividual genetic variation influencing glutamine metabolism in susceptibility to infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Glutamina , Antifúngicos , Aspergilose/microbiologia , Citocinas/metabolismo
5.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35500936

RESUMO

Mutations in the CFTR anion channel cause cystic fibrosis (CF) and have also been related to higher cancer incidence. Previously we proposed that this is linked to an emerging role of functional CFTR in protecting against epithelial-mesenchymal transition (EMT). However, the pathways bridging dysfunctional CFTR to EMT remain elusive. Here, we applied systems biology to address this question. Our data show that YAP1 is aberrantly active in the presence of mutant CFTR, interacting with F508del, but not with wt-CFTR, and that YAP1 knockdown rescues F508del-CFTR processing and function. Subsequent analysis of YAP1 interactors and roles in cells expressing either wt- or F508del-CFTR reveal that YAP1 is an important mediator of the fibrotic/EMT processes in CF. Alongside, five main pathways emerge here as key in linking mutant CFTR to EMT, namely, (1) the Hippo pathway; (2) the Wnt pathway; (3) the TGFß pathway; (4) the p53 pathway; and (5) MYC signaling. Several potential hub proteins which mediate the crosstalk among these pathways were also identified, appearing as potential therapeutic targets for both CF and cancer.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/uso terapêutico , Transdução de Sinais/genética , Proteínas de Sinalização YAP
6.
NPJ Regen Med ; 6(1): 11, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654068

RESUMO

Spinal cord injury (SCI) leads to dramatic impairments of motor, sensory, and autonomic functions of affected individuals. Following the primary injury, there is an increased release of glutamate that leads to excitotoxicity and further neuronal death. Therefore, modulating glutamate excitotoxicity seems to be a promising target to promote neuroprotection during the acute phase of the injury. In this study, we evaluated the therapeutic effect of a FDA approved antiepileptic drug (levetiracetam-LEV), known for binding to the synaptic vesicle protein SV2A in the brain and spinal cord. LEV therapy was tested in two models of SCI-one affecting the cervical and other the thoracic level of the spinal cord. The treatment was effective on both SCI models. Treated animals presented significant improvements on gross and fine motor functions. The histological assessment revealed a significant decrease of cavity size, as well as higher neuronal and oligodendrocyte survival on treated animals. Molecular analysis revealed that LEV acts by stabilizing the astrocytes allowing an effective uptake of the excess glutamate from the extracellular space. Overall, our results demonstrate that Levetiracetam may be a promising drug for acute management of SCI.

7.
Nat Commun ; 11(1): 2282, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385235

RESUMO

In response to infection, macrophages adapt their metabolism rapidly to enhance glycolysis and fuel specialized antimicrobial effector functions. Here we show that fungal melanin is an essential molecule required for the metabolic rewiring of macrophages during infection with the fungal pathogen Aspergillus fumigatus. Using pharmacological and genetic tools, we reveal a molecular link between calcium sequestration by melanin inside the phagosome and induction of glycolysis required for efficient innate immune responses. By remodeling the intracellular calcium machinery and impairing signaling via calmodulin, melanin drives an immunometabolic signaling axis towards glycolysis with activation of hypoxia-inducible factor 1 subunit alpha (HIF-1α) and phagosomal recruitment of mammalian target of rapamycin (mTOR). These data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during fungal infection and highlight the metabolic repurposing of immune cells as a potential therapeutic strategy.


Assuntos
Aspergillus fumigatus/imunologia , Imunidade , Macrófagos/imunologia , Macrófagos/microbiologia , Melaninas/metabolismo , Fagossomos/metabolismo , Animais , Sinalização do Cálcio , Glucose/metabolismo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactatos/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma/genética
8.
Nutrients ; 11(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540239

RESUMO

Sickle cell disease (SCD) is a genetic hemoglobinopathy characterized by chronic hemolysis. Chronic hemolysis is promoted by increased oxidative stress. Our hypothesis was that some antioxidant micronutrients (retinol, tocopherol, selenium, and zinc) would be determinant factors of the degree of hemolysis in SCD patients. We aimed to investigate the nutritional adequacy of these antioxidants and their relationships to hemolysis. The study included 51 adult SCD patients regularly assisted in two reference centers for hematology in the State of Rio de Janeiro, Brazil. Serum concentrations of retinol, alpha-tocopherol, selenium, and zinc were determined by high-performance liquid chromatography or atomic absorption spectrometry. Hematological parameters (complete blood count, reticulocyte count, hemoglobin, direct and indirect bilirubin, total bilirubin, lactate dehydrogenase) and inflammation markers (leukocytes and ultra-sensitive C-reactive protein) were analyzed. A linear regression model was used to test the associations between the variables. Most patients presented selenium deficiency and low selenium consumption. Linear regression analysis showed that selenium is the main determinant of hemolysis among the antioxidant nutrients analyzed. Thus, data from this study suggest that the nutritional care protocols for patients with SCD should include dietary sources of selenium in order to reduce the risk of hemolysis.


Assuntos
Anemia Falciforme/sangue , Hemólise/fisiologia , Selênio/sangue , Selênio/deficiência , Adulto , Antioxidantes , Brasil , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Selênio/administração & dosagem , Vitamina A/sangue , Zinco/sangue , alfa-Tocoferol/sangue
9.
Exp Suppl ; 109: 403-420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30535607

RESUMO

In recent years, the renewed interest in immune cell metabolism has driven the emergence of a research field aimed at studying the role of metabolic processes during innate and adaptive immune responses. Although the specific requirements of myeloid cells after the canonical lipopolysaccharide/TLR4 stimulation have been extensively addressed, recent evidence suggests that this model may not represent a universally accurate metabolic blueprint. Instead, different microbial stimuli, pathogens, or tissue microenvironments trigger specific and complex metabolic rewiring of myeloid cells. This chapter aims to provide an overview of the metabolic heterogeneity in activated myeloid cells during fungal disease. Directions for future research in dissecting the uniqueness of metabolic signatures during fungal infection are suggested to ultimately provide new tailored diagnostic and therapeutic interventions.


Assuntos
Imunidade Inata , Micoses/imunologia , Micoses/metabolismo , Células Mieloides/metabolismo , Humanos , Lipopolissacarídeos , Células Mieloides/imunologia , Receptor 4 Toll-Like/imunologia
10.
Front Microbiol ; 8: 2362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238334

RESUMO

Background: Invasive pulmonary aspergillosis (IPA) is an infection that primarily affects immunocompromised hosts, including hematological patients and stem-cell transplant recipients. The diagnosis of IPA remains challenging, making desirable the availability of new specific biomarkers. High-throughput methods now allow us to interrogate the immune system for multiple markers of inflammation with enhanced resolution. Methods: To determine whether a signature of alveolar cytokines could be associated with the development of IPA and used as a diagnostic biomarker, we performed a nested case-control study involving 113 patients at-risk. Results: Among the 32 analytes tested, IL-1ß, IL-6, IL-8, IL-17A, IL-23, and TNFα were significantly increased among patients with IPA, defining two clusters able to accurately differentiate cases of infection from controls. Genetic variants previously reported to confer increased risk of IPA compromised the production of specific cytokines and impaired their discriminatory potential toward infection. Collectively, our data indicated that IL-8 was the best performing cytokine, with alveolar levels ≥904 pg/mL predicting IPA with elevated sensitivity (90%), specificity (73%), and negative predictive value (88%). Conclusions: These findings highlight the existence of a specific profile of alveolar cytokines, with IL-8 being the dominant discriminator, which might be useful in supporting current diagnostic approaches for IPA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA