Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 172(2): 441-462, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33247842

RESUMO

This work presents a robust analysis of the inositols (INSs) and raffinose family oligosaccharides (RFOs) pathways, using genomic and transcriptomic tools in cowpea under root dehydration. Nineteen (~70%) of the 26 scrutinized enzymes presented transcriptional up-regulation in at least one treatment time. The transcriptional orchestration allowed categorization of the analyzed enzymes as time-independent (those showing the same regulation throughout the assay) and time-dependent (those showing different transcriptional regulation over time). It is suggested that up-regulated time-independent enzymes (INSs: myo-inositol oxygenase, inositol-tetrakisphosphate 1-kinase 3, phosphatidylinositol 4-phosphate 5-kinase 4-like, 1-phosphatidylinositol-3-phosphate 5-kinase, phosphoinositide phospholipase C, and non-specific phospholipase C; RFOs: α-galactosidase, invertase, and raffinose synthase) actively participate in the reorganization of cowpea molecular physiology under the applied stress. In turn, time-dependent enzymes, especially those up-regulated in some of the treatment times (INSs: inositol-pentakisphosphate 2-kinase, phosphatidylinositol 4-kinase, phosphatidylinositol synthase, multiple inositol polyphosphate phosphatase 1, methylmalonate-semialdehyde dehydrogenase, triosephosphate isomerase, myo-inositol-3-phosphate synthase, phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein-tyrosine-phosphatase, and phosphatidylinositol 3-kinase; RFOs: galactinol synthase) seem to participate in fine-tuning of the molecular physiology, helping the cowpea plants to acclimatize under dehydration stress. Not all loci encoding the studied enzymes were expressed during the assay; most of the expressed ones exhibited a variable transcriptional profile in the different treatment times. Genes of the INSs and RFOs pathways showed high orthology with analyzed Phaseoleae members, suggesting a relevant role within this legume group. Regarding the promoter regions of INSs and RFOs genes, some bona fide cis-regulatory elements were identified in association with seven transcription factor families (AP2-EFR, Dof-type, MADS-box, bZIP, CPP, ZF-HD, and GATA-type). Members of INSs and RFOs pathways potentially participate in other processes regulated by these proteins in cowpea.


Assuntos
Inositol , Vigna , Desidratação , Rafinose , Fatores de Transcrição , Vigna/genética
2.
BMC Genomics ; 12: 307, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663675

RESUMO

BACKGROUND: Small RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs) act in several plant pathways associated with tissue proliferation, differentiation, and development and in response to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa sequencing. RESULTS: The libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs. From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype, most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved and novel miRNAs families. CONCLUSIONS: Validation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.


Assuntos
Glycine max/genética , MicroRNAs/genética , Estresse Fisiológico , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA
3.
BMC Genomics ; 8: 71, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17355627

RESUMO

BACKGROUND: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. RESULTS: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. CONCLUSION: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Expressão Gênica , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Saccharum/genética , Saccharum/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Bases de Dados Genéticas , Desastres , Regulação da Expressão Gênica de Plantas/genética , Herbaspirillum , Mariposas , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/efeitos dos fármacos , Saccharum/microbiologia , Transdução de Sinais/genética
4.
PLoS One ; 12(11): e0187920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145496

RESUMO

Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.


Assuntos
Genes de Plantas , Glycine max/genética , Oxigênio/metabolismo , Estresse Fisiológico , Transcriptoma , Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia
5.
Front Plant Sci ; 8: 448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443101

RESUMO

Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.

6.
Genet Mol Biol ; 35(1 (suppl)): 247-59, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22802710

RESUMO

Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine max HSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatula and Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotus and Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs. controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA