Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 63(8): 1576-1587, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32500289

RESUMO

AIMS/HYPOTHESIS: Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS: The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS: Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION: Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY: Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Imunidade Inata/fisiologia , Leucócitos Mononucleares/metabolismo , Monócitos/metabolismo , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Enterotoxinas/farmacologia , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Interleucina-1/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Monócitos/efeitos dos fármacos
2.
J Immunol ; 196(5): 2031-40, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826238

RESUMO

Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/ß receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/ß receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.


Assuntos
Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Fator de Transcrição STAT1/imunologia , Tolerância a Antígenos Próprios/imunologia , Transporte Ativo do Núcleo Celular , Animais , Western Blotting , Linhagem da Célula , Núcleo Celular/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Microscopia Confocal , Monócitos/citologia , Monócitos/imunologia , Oligodesoxirribonucleotídeos/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/metabolismo , Receptor Toll-Like 9/agonistas
3.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986808

RESUMO

Mapping the functional human genome and impact of genetic variants is often limited to European-descendent population samples. To aid in overcoming this limitation, we measured gene expression using RNA sequencing in lymphoblastoid cell lines (LCLs) from 599 individuals from six African populations to identify novel transcripts including those not represented in the hg38 reference genome. We used whole genomes from the 1000 Genomes Project and 164 Maasai individuals to identify 8,881 expression and 6,949 splicing quantitative trait loci (eQTLs/sQTLs), and 2,611 structural variants associated with gene expression (SV-eQTLs). We further profiled chromatin accessibility using ATAC-Seq in a subset of 100 representative individuals, to identity chromatin accessibility quantitative trait loci (caQTLs) and allele-specific chromatin accessibility, and provide predictions for the functional effect of 78.9 million variants on chromatin accessibility. Using this map of eQTLs and caQTLs we fine-mapped GWAS signals for a range of complex diseases. Combined, this work expands global functional genomic data to identify novel transcripts, functional elements and variants, understand population genetic history of molecular quantitative trait loci, and further resolve the genetic basis of multiple human traits and disease.

4.
JCI Insight ; 3(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29415894

RESUMO

Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.


Assuntos
Autoimunidade/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Compostos de Sulfonilureia/administração & dosagem , Células Th1/imunologia , Administração Oral , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Dinoprostona/imunologia , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-1/imunologia , Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de Prostaglandina E Subtipo EP4/imunologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo
5.
Sci Signal ; 9(433): ra62, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27330189

RESUMO

The receptor tyrosine kinase MET is abundant in many human squamous cell carcinomas (SCCs), but its functional significance in tumorigenesis is not clear. We found that the incidence of carcinogen-induced skin squamous tumors was substantially increased in transgenic MT-HGF (mouse metallothionein-hepatocyte growth factor) mice, which have increased abundance of the MET ligand HGF. Squamous tumors also erupted spontaneously on the skin of MT-HGF mice that were promoted by wounding or the application of 12-O-tetradecanoylphorbol 13-acetate, an activator of protein kinase C. Carcinogen-initiated tumors had Ras mutations, but spontaneous tumors did not. Cultured keratinocytes from MT-HGF mice and oncogenic RAS-transduced keratinocytes shared phenotypic and biochemical features of initiation that were dependent on autocrine activation of epidermal growth factor receptor (EGFR) through increased synthesis and release of EGFR ligands, which was mediated by the kinase SRC, the pseudoproteases iRhom1 and iRhom2, and the metallopeptidase ADAM17. Pharmacological inhibition of EGFR caused the regression of MT-HGF squamous tumors that developed spontaneously in orthografts of MT-HGF keratinocytes combined with dermal fibroblasts and implanted onto syngeneic mice. The global gene expression profile in MET-transformed keratinocytes was highly concordant with that in RAS-transformed keratinocytes, and a core RAS/MET coexpression network was activated in precancerous and cancerous human skin lesions. Tissue arrays revealed that many human skin SCCs have abundant HGF at both the transcript and protein levels. Thus, through the activation of EGFR, MET activation parallels a RAS pathway to contribute to human and mouse cutaneous cancers.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores ErbB/metabolismo , Queratinócitos/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/patologia , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade
6.
Cancer Biol Ther ; 17(12): 1240-1252, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27791595

RESUMO

Diffuse Large B-cell lymphoma (DLBCL) is an aggressive malignancy that has a 60 percent 5-year survival rate, highlighting a need for new therapeutic approaches. Histone deacetylase inhibitors (HDACi) are novel therapeutics being clinically-evaluated in combination with a variety of other drugs. However, rational selection of companion therapeutics for HDACi is difficult due to their poorly-understood, cell-type specific mechanisms of action. To address this, we developed a pre-clinical model system of sensitivity and resistance to the HDACi belinostat using DLBCL cell lines. In the current study, we demonstrate that cell lines sensitive to the cytotoxic effects of HDACi undergo early mitotic arrest prior to apoptosis. In contrast, HDACi-resistant cell lines complete mitosis after a short delay and arrest in G1. To force mitotic arrest in HDACi-resistant cell lines, we used low dose vincristine or paclitaxel in combination with belinostat and observed synergistic cytotoxicity. Belinostat curtails vincristine-induced mitotic arrest and triggers a strong apoptotic response associated with downregulated MCL-1 expression and upregulated BIM expression. Resistance to microtubule targeting agents (MTAs) has been associated with their propensity to induce polyploidy and thereby increase the probability of genomic instability that enables cancer progression. Co-treatment with belinostat effectively eliminated a vincristine-induced, actively cycling polyploid cell population. Our study demonstrates that vincristine sensitizes DLBCL cells to the cytotoxic effects of belinostat and that belinostat prevents polyploidy that could cause vincristine resistance. Our findings provide a rationale for using low dose MTAs in conjunction with HDACi as a potential therapeutic strategy for treatment of aggressive DLBCL.


Assuntos
Citotoxinas/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Mitose/efeitos dos fármacos , Sulfonamidas/farmacologia , Moduladores de Tubulina/farmacologia , Vincristina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Modelos Biológicos , Paclitaxel/farmacologia , Poliploidia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA