Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806707

RESUMO

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.

2.
Pacing Clin Electrophysiol ; 47(3): 398-400, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341644

RESUMO

INTRODUCTION: Complications are more prevalent in pediatric patients receiving pacemaker implants. METHODS: We performed a retrospective review of a retrievable, 38 mm leadless pacemaker implantation in a 23-kg pediatric patient. CASE/DISCUSSION: An active 9-year-old, 23 kg male patient with tetralogy of Fallot with intermittent pacing need presented with a fractured lead and pacing need. He underwent implant of a retrievable leadless pacemaker (Abbott Aveir) via internal jugular vein access, without complication, and with echocardiographic guidance. His threshold was stable at 1.25 V @0.4 ms, with stable impedance and sensing at 5-month follow-up. CONCLUSION: Aveir retrievable leadless pacemakers can be implanted safely in a child with tetralogy of Fallot, as small as 23 kilograms.


Assuntos
Cardiopatias Congênitas , Marca-Passo Artificial , Tetralogia de Fallot , Humanos , Masculino , Criança , Tetralogia de Fallot/cirurgia , Resultado do Tratamento , Marca-Passo Artificial/efeitos adversos , Estudos Retrospectivos , Desenho de Equipamento , Cardiopatias Congênitas/terapia , Estimulação Cardíaca Artificial
3.
J Am Chem Soc ; 145(24): 12992-12997, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294668

RESUMO

An expansion of the hexanucleotide (GGGGCC) repeat sequence in chromosome 9 open frame 72 (c9orf72) is the most common genetic mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mutation leads to the production of toxic dipeptide repeat proteins (DPRs) that induce neurodegeneration. However, the fundamental physicochemical properties of DPRs remain largely unknown due to their limited availability. Here, we synthesized the c9orf72 DPRs poly-glycine-arginine (poly-GR), poly-proline-arginine (poly-PR), poly-glycine-proline (poly-GP), poly-proline-alanine (poly-PA), and poly-glycine-alanine (poly-GA) using automated fast-flow peptide synthesis (AFPS) and achieved single-domain chemical synthesis of proteins with up to 200 amino acids. Circular dichroism spectroscopy of the synthetic DPRs revealed that proline-containing poly-PR, poly-GP, and poly-PA could adopt polyproline II-like helical secondary structures. In addition, structural analysis by size-exclusion chromatography indicated that longer poly-GP and poly-PA might aggregate. Furthermore, cell viability assays showed that human neuroblastoma cells cultured with poly-GR and poly-PR with longer repeat lengths resulted in reduced cell viability, while poly-GP and poly-PA did not, thereby reproducing the cytotoxic property of endogenous DPRs. This research demonstrates the potential of AFPS to synthesize low-complexity peptides and proteins necessary for studying their pathogenic mechanisms and constructing disease models.


Assuntos
Dipeptídeos , Proteínas , Humanos , Dipeptídeos/química , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Fases de Leitura Aberta , Proteínas/química , Glicina , Alanina , Prolina , Arginina/genética , Cromossomos Humanos Par 9/metabolismo
4.
Clin Infect Dis ; 75(1): e536-e544, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35412591

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. METHODS: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. RESULTS: In total, 58 848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95% confidence interval [CI] 2.40-4.26), Beta (HR 2.85, 95% CI 1.56-5.23), Delta (HR 2.28 95% CI 1.56-3.34), or Alpha (HR 1.64, 95% CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95% CI .56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSIONS: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2/genética , Washington/epidemiologia
5.
J Am Chem Soc ; 144(26): 11706-11712, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749644

RESUMO

Catalyst transfer polymerization (CTP) is widely applied to the synthesis of well-defined π-conjugated polymers. Unlike other polymerization reactions that can be performed in water (e.g., controlled radical polymerizations and ring-opening polymerizations), CTP has yet to be adapted for the modification of biopolymers. Here, we report the use of protein-palladium oxidative addition complexes (OACs) that enable catalyst transfer polymerization to furnish protein-polyarene conjugates. These polymerizations occur with electron-deficient monomers in aqueous buffers open to air at mild (≤37 °C) temperatures with full conversion of the protein OAC and an average polymer length of nine repeating units. Proteins with polyarene chains terminated with palladium OACs can be readily isolated. Direct evidence of protein-polyarene OAC formation was obtained using mass spectrometry, and all protein-polyarene chain ends were uniformly functionalized via C-S arylation to terminate the polymerization with a small molecule thiol or a cysteine-containing protein.


Assuntos
Paládio , Proteínas , Paládio/química , Polimerização , Polímeros/química , Proteínas/química , Água/química
6.
J Am Chem Soc ; 144(17): 7852-7860, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438502

RESUMO

Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.


Assuntos
Boranos , Paládio , Boranos/química , Paládio/química , Peptídeos , Proteínas/química , Trastuzumab
7.
J Am Chem Soc ; 143(30): 11788-11798, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34289685

RESUMO

Transcription factors (TF), such as Myc, are proteins implicated in disease pathogenesis, with dysregulation of Myc expression in 50% of all human cancers. Still, targeting Myc remains a challenge due to the lack of small molecule binding pockets in the tertiary structure. Here, we report synthetic covalently linked TF mimetics that inhibit oncogenic Myc-driven transcription by antagonistic binding of the target DNA-binding site. We combined automated flow peptide chemistry with palladium(II) oxidative addition complexes (OACs) to engineer covalent protein dimers derived from the DNA-binding domains of Myc, Max, and Omomyc TF analogs. Palladium-mediated cross-coupling of synthesized protein monomers resulted in milligram quantities of seven different covalent homo- and heterodimers. The covalent helical dimers were found to bind DNA and exhibited improved thermal stability. Cell-based studies revealed the Max-Max covalent dimer is cell-penetrating and interfered with Myc-dependent gene transcription resulting in reduced cancer cell proliferation (EC50 of 6 µM in HeLa). RNA sequencing and gene analysis of extracted RNA from treated cancer cells confirmed that the covalent Max-Max homodimer interferes with Myc-dependent transcription. Flow chemistry, combined with palladium(II) OACs, has enabled a practical strategy to generate new bioactive compounds to inhibit tumor cell proliferation.


Assuntos
Indicadores e Reagentes/química , Paládio/química , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-myc/síntese química , Proliferação de Células/efeitos dos fármacos , DNA/química , Células HeLa , Humanos , Indicadores e Reagentes/farmacologia , Modelos Moleculares , Paládio/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética
8.
J Am Chem Soc ; 143(44): 18548-18558, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709810

RESUMO

Covalent assemblies of conjugated organic chromophores provide the opportunity to engineer new excited states with novel properties. In this work, a newly developed triple-stranded cage architecture, in which meta-substituted aromatic caps serve as covalent linking groups that attach to both top and bottom of the conjugated molecule walls, is used to tune the properties of thiophene oligomer assemblies. Benzene-capped and triazine-capped 5,5'-(2,2-bithiophene)-containing arylene cages are synthesized and characterized using steady-state and time-resolved spectroscopic methods. The conformational freedom and electronic states are analyzed using time-dependent density functional theory. The benzene cap acts as a passive spacer whose electronic states do not mix with those of the chromophore walls. The excited state properties are dominated by through-space interactions between the chromophore subunits, generating a neutral Frenkel H-type exciton state. This excitonic state undergoes intersystem crossing on a 200 ps time scale while the fluorescence output is suppressed by a factor of 2 due to a decreased radiative rate. Switching to a triazine cap enables electron transfer from the chromophore-linker after the initial excitation to the exciton state, leading to the formation of a charge-transfer state within 10 ps. This state can avoid intersystem crossing and exhibits red-shifted fluorescence with enhanced quantum yield. The ability to interchange structural modules with different electronic properties while retaining the overall cage morphology provides a new approach for tuning the properties of discrete chromophore assemblies.

9.
Chemistry ; 27(15): 4898-4902, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33576516

RESUMO

Ruthenium-catalyzed butadiene-mediated benzannulation enabled the first synthesis of 3,10-(di-tert-butyl)rubicene and its N-doped derivatives as well as preliminary studies on their photophysical properties. Unlike the parent rubicene and 3,10-(di-tert-butyl)rubicene, which adopt classical herringbone-type packing motifs in the solid state, the N-doped congener 7 b displayed columnar packing with an alternating co-facial arrangement of aromatic and heteroaromatic substructures.

10.
Angew Chem Int Ed Engl ; 60(21): 12109-12115, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33730425

RESUMO

Organometallic reagents enable practical strategies for bioconjugation. Innovations in the design of water-soluble ligands and the enhancement of reaction rates have allowed for chemoselective cross-coupling reactions of peptides and proteins to be carried out in water. There are currently no organometallic-based methods for oligonucleotide bioconjugation to other biomolecules. Here we report bifunctional palladium(II)-oxidative addition complexes (OACs) as reagents for high-yielding oligonucleotide bioconjugation reactions. These bifunctional OACs react chemoselectively with amine-modified oligonucleotides to generate the first isolable, bench stable oligonucleotide-palladium(II) OACs. These complexes undergo site-selective C-S arylation with a broad range of native thiol-containing biomolecules at low micromolar concentrations in under one hour. This approach provided oligonucleotide-peptide, oligonucleotide-protein, oligonucleotide-small molecule, and oligonucleotide-oligonucleotide conjugates in >80 % yield and afforded conjugation of multiple copies of oligonucleotides onto a monoclonal antibody.


Assuntos
Reagentes de Ligações Cruzadas/química , Oligonucleotídeos/química , Compostos Organometálicos/química , Reagentes de Ligações Cruzadas/síntese química , Oligonucleotídeos/síntese química , Compostos Organometálicos/síntese química , Paládio/química , Peptídeos/química , Trastuzumab/química
11.
Chemistry ; 25(13): 3147-3155, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30051523

RESUMO

In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon-metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.

12.
Nat Prod Rep ; 35(3): 220-229, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29513338

RESUMO

Review primarily covers from 1995-2018Carbohydrate function, recognized in a multitude of biological processes, provides a precedent for developing carbohydrate surrogates that mimic the structure and function of bioactive compounds. In order to constrain highly flexible oligosaccharides, synthetic tethering techniques like those exemplified by stapled peptides are utilized to varying degrees of success. Naturally occurring constrained carbohydrates, however, exist with noteworthy cytotoxic and chemosensitizing properties. This review highlights the structure, biology, and synthesis of this intriguing class of molecules.


Assuntos
Oligossacarídeos/química , Oligossacarídeos/farmacologia , Configuração de Carboidratos , Carboidratos/síntese química , Carboidratos/química , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicosídeos/química , Glicosilação , Humanos , Lectinas/metabolismo , Oligossacarídeos/síntese química , Oligossacarídeos/metabolismo , Relação Estrutura-Atividade
13.
Angew Chem Int Ed Engl ; 57(24): 7091-7095, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29671931

RESUMO

Reported is the stereospecific cross-coupling of anomeric stannanes with symmetrical diselenides, resulting in the synthesis of selenoglycosides with exclusive anomeric control. The reaction proceeds without the need for directing groups and is compatible with free hydroxy groups as demonstrated in the preparation of glycoconjugates derived from mono-, di-, and trisaccharides and peptides (35 examples). Given its generality and broad substrate scope, the glycosyl cross-coupling method presented herein can find use in the synthesis of selenium-containing glycomimetics and glycoconjugates.


Assuntos
Glicoconjugados/síntese química , Glicosídeos/síntese química , Compostos Organosselênicos/síntese química , Técnicas de Química Sintética , Glicoconjugados/química , Glicosídeos/química , Oligossacarídeos/síntese química , Oligossacarídeos/química , Compostos Organosselênicos/química , Peptídeos/síntese química , Peptídeos/química , Estereoisomerismo , Compostos de Estanho/síntese química , Compostos de Estanho/química
15.
J Am Chem Soc ; 139(49): 17908-17922, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148749

RESUMO

Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd2(dba)3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the ß-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the ß-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric position. Taken together, facile access to both anomers of various glycoside nucleophiles, a broad reaction scope, and uniformly high transfer of anomeric configuration make the glycosyl cross-coupling reaction a practical tool for the synthesis of bioactive natural products, drug candidates, allowing for late-stage glycodiversification studies with small molecules and biologics.


Assuntos
Glicosilação , Monossacarídeos/química , Monossacarídeos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Glicosídeos , Paládio/química , Teoria Quântica , Compostos de Estanho/síntese química , Compostos de Estanho/química
16.
J Am Chem Soc ; 138(37): 12049-52, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27612008

RESUMO

We demonstrate that configurationally stable anomeric stannanes undergo a stereospecific cross-coupling reaction with aromatic halides in the presence of a palladium catalyst with exceptionally high levels of stereocontrol. In addition to a broad substrate scope (>40 examples), this reaction eliminates critical problems inherent to nucleophilic displacement methods and is applicable to (hetero)aromatics, peptides, pharmaceuticals, common monosaccharides, and saccharides containing free hydroxyl groups.


Assuntos
Glicosídeos/síntese química , Compostos de Estanho/química , Catálise , Estrutura Molecular , Paládio
17.
Opt Express ; 22(13): 16456-61, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977895

RESUMO

We developed a low-cost, low-noise, tunable, high-peak-power, ultrafast laser system based on a SESAM-modelocked, solid-state Yb tungstate laser plus spectral broadening via a microstructured fiber followed by pulse compression. The spectral selection, tuning, and pulse compression are performed with a simple prism compressor. The output pulses are tunable from 800 to 1250 nm, with the pulse duration down to 25 fs, and average output power up to 150 mW, at 80 MHz pulse repetition rate. We introduce the figure of merit (FOM) for the two-photon and multi-photon imaging (or other nonlinear processes), which is a useful guideline in discussions and for designing the lasers for an improved microscopy signal. Using a 40 MHz pulse repetition rate laser system, with twice lower FOM, we obtained high signal-to-noise ratio two-photon fluorescence images with or without averaging, of mouse intestine section and zebra fish embryo. The obtained images demonstrate that the developed system is capable of nonlinear (TPE, SHG) imaging in a multimodal operation. The system could be potentially used in a variety of other techniques including, THG, CARS and applications such as nanosurgery.

18.
ACS Omega ; 9(10): 11266-11272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497006

RESUMO

Organic molecules that undergo supercooling can provide the basis for novel stimuli-responsive materials, but the number of such compounds is limited. Results in this paper show that the stable organic radical 2,2,6,6-tetramethyl-1-piperidine-1-oxyl (TEMPO) can form a stable supercooled liquid (SCL). Upon melting and cooling back to room temperature, the TEMPO SCL can persist for months, even after mild physical agitation. Its high vapor pressure can enable crystal growth at remote locations within the sample container over the course of days. Optical, electron paramagnetic resonance, and birefringence measurements show no evidence of new chemical species or partially ordered phases in the supercooled liquid. TEMPO's free radical character permits absorption of visible light that can drive photothermal melting to form the SCL, while a single nanosecond light pulse can initiate recrystallization of the SCL at some later time. This capability enables all-optical switching between the solid and the SCL phases. The physical origin of TEMPO's remarkable stability as an SCL remains an open question, but these results suggest that organic radicals comprise a new class of molecules that can form SCLs with potentially useful properties.

19.
Chem Commun (Camb) ; 60(31): 4238-4241, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38529790

RESUMO

Polymer-protein bioconjugation offers a powerful strategy to alter the physical properties of proteins, and various synthetic polymer compositions and architectures have been investigated for this purpose. Nevertheless, conjugation of molecular bottlebrush polymers (BPs) to proteins remains an unsolved challenge due to the large size of BPs and a general lack of methods to transform the chain ends of BPs into functional groups suitable for bioconjugation. Here, we present a strategy to address this challenge in the context of BPs prepared by "graft-through" ring-opening metathesis polymerization (ROMP), one of the most powerful methods for BP synthesis. Quenching ROMP of PEGylated norbornene macromonomers with an activated enyne terminator facilitates the transformation of the BP Ru alkylidene chain ends into Pd oxidative addition complexes (OACs) for facile bioconjugation. This strategy is shown to be effective for the synthesis of two BP-protein conjugates (albumin and ERG), setting the stage for a new class of BP-protein conjugates for future therapeutic and imaging applications.


Assuntos
Polímeros , Proteínas , Polimerização , Albuminas
20.
ACS Cent Sci ; 10(4): 793-802, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38680558

RESUMO

Antigen processing is critical for therapeutic vaccines to generate epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often limits the quantity of epitopes released. We address this challenge using machine learning to ascribe a proteasomal degradation score to epitope sequences. Epitopes with varying scores were translocated into cells using nontoxic anthrax proteins. Epitopes with a low score show pronounced immunogenicity due to antigen processing, but epitopes with a high score show limited immunogenicity. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by these vaccines in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA