RESUMO
Viruses hijack host metabolic pathways for their replicative advantage. In this study, using patient-derived multiomics data and in vitro infection assays, we aimed to understand the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 reproduction and their association with disease severity. We used multiomics platforms (targeted and untargeted proteomics and untargeted metabolomics) on patient samples and cell-line models along with immune phenotyping of metabolite transporters in patient blood cells to understand viral-induced metabolic modulations. We also modulated key metabolic pathways that were identified using multiomics data to regulate the viral reproduction in vitro. Coronavirus disease 2019 disease severity was characterized by increased plasma glucose and mannose levels. Immune phenotyping identified altered expression patterns of carbohydrate transporter, glucose transporter 1, in CD8+ T cells, intermediate and nonclassical monocytes, and amino acid transporter, xCT, in classical, intermediate, and nonclassical monocytes. In in vitro lung epithelial cell (Calu-3) infection model, we found that glycolysis and glutaminolysis are essential for virus replication, and blocking these metabolic pathways caused significant reduction in virus production. Taken together, we therefore hypothesized that severe acute respiratory syndrome coronavirus-2 utilizes and rewires pathways governing central carbon metabolism leading to the efflux of toxic metabolites and associated with disease severity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.
Assuntos
Proteínas Sanguíneas/metabolismo , COVID-19/etiologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Sistema y+ de Transporte de Aminoácidos/sangue , Aminoácidos/sangue , Biomarcadores/sangue , Proteínas Sanguíneas/análise , COVID-19/metabolismo , COVID-19/virologia , Carboidratos/sangue , Estudos de Casos e Controles , Transportador de Glucose Tipo 1/sangue , Hospitalização , Humanos , Imunofenotipagem , Manose/sangue , Lectina de Ligação a Manose/sangue , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Replicação ViralRESUMO
Emerging and re-emerging infectious diseases due to RNA viruses cause major negative consequences for the quality of life, public health, and overall economic development. Most of the RNA viruses causing illnesses in humans are of zoonotic origin. Zoonotic viruses can directly be transferred from animals to humans through adaptation, followed by human-to-human transmission, such as in human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and, more recently, SARS coronavirus 2 (SARS-CoV-2), or they can be transferred through insects or vectors, as in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), Zika virus (ZIKV), and dengue virus (DENV). At the present, there are no vaccines or antiviral compounds against most of these viruses. Because proteins possess a vast array of functions in all known biological systems, proteomics-based strategies can provide important insights into the investigation of disease pathogenesis and the identification of promising antiviral drug targets during an epidemic or pandemic. Mass spectrometry technology has provided the capacity required for the precise identification and the sensitive and high-throughput analysis of proteins on a large scale and has contributed greatly to unravelling key protein-protein interactions, discovering signaling networks, and understanding disease mechanisms. In this Review, we present an account of quantitative proteomics and its application in some prominent recent examples of emerging and re-emerging RNA virus diseases like HIV-1, CCHFV, ZIKV, and DENV, with more detail with respect to coronaviruses (MERS-CoV and SARS-CoV) as well as the recent SARS-CoV-2 pandemic.
Assuntos
Doenças Transmissíveis Emergentes , Proteômica , Infecções por Vírus de RNA , Animais , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/terapia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/diagnóstico , Humanos , Pandemias , Pneumonia Viral , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/terapia , Infecções por Vírus de RNA/virologia , Vírus de RNARESUMO
HIV-1 infection induces a chronic inflammatory environment not restored by suppressive antiretroviral therapy (ART). As of today, the effect of viral suppression and immune reconstitution in people living with HIV-1 (PLWH) has been well described but not completely understood. Herein, we show how PLWH who naturally control the virus (PLWHEC) have a reduced proportion of CD4+CCR6+ and CD8+CCR6+ cells compared to PLWH on suppressive ART (PLWHART) and HIV-1 negative controls (HC). Expression of CCR2 was reduced on both CD4+, CD8+ and classical monocytes in PLWHEC compared to PLWHART and HC. Longer suppressive therapy, measured in the same patients, decreased number of cells expressing CCR2 on all monocytic cell populations while expression on CD8+ T cells increased. Furthermore, the CD4+CCR6+/CCR6- cells exhibited a unique proteomic profile with a modulated energy metabolism in PLWHEC compared to PLWHART independent of CCR6 status. The CD4+CCR6+ cells also showed an enrichment in proteins involved in apoptosis and p53 signalling in PLWHEC compared to PLWHART, indicative of increased sensitivity towards cell death mechanisms. Collectively, this data shows how PLWHEC have a unique chemokine receptor profile that may aid in facilitating natural control of HIV-1 infection.
Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Controladores de Elite , Infecções por HIV/tratamento farmacológico , Humanos , Proteômica , Receptores CCR6/metabolismoRESUMO
The commonly used laboratory cell lines are the first line of experimental models to study the pathogenicity and performing antiviral assays for emerging viruses. Here, we assessed the tropism and cytopathogenicity of the first Swedish isolate of SARS-CoV-2 in six different human cell lines, compared their growth characteristics, and performed quantitative proteomics for the susceptible cell lines. Overall, Calu-3, Caco2, Huh7, and 293FT cell lines showed a high-to-moderate level of susceptibility to SARS-CoV-2. In Caco2 cells, the virus can achieve high titers in the absence of any prominent cytopathic effect. The protein abundance profile during SARS-CoV-2 infection revealed cell-type-specific regulation of cellular pathways. Type-I interferon signaling was identified as the common dysregulated cellular response in Caco2, Calu-3, and Huh7 cells. Together, our data show cell-type specific variability for cytopathogenicity, susceptibility, and cellular response to SARS-CoV-2 and provide important clues to guide future studies.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has caused a global health emergency. A key feature of COVID-19 is dysregulated interferon-response. Type-I interferon (IFN-I) is one of the earliest antiviral innate immune responses following viral infection and plays a significant role in the pathogenesis of SARS-CoV-2. In this study, using a proteomics-based approach, we identified that SARS-CoV-2 infection induces delayed and dysregulated IFN-I signaling in Huh7 cells. We demonstrate that SARS-CoV-2 is able to inhibit RIG-I mediated IFN-ß production. Our results also confirm the recent findings that IFN-I pretreatment is able to reduce the susceptibility of Huh7 cells to SARS-CoV-2, but not post-treatment. Moreover, senescent Huh7 cells, in spite of showing accentuated IFN-I response were more susceptible to SARS-CoV-2 infection, and the virus effectively inhibited IFIT1 in these cells. Finally, proteomic comparison between SARS-CoV-2, SARS-CoV, and MERS-CoV revealed a distinct differential regulatory signature of interferon-related proteins emphasizing that therapeutic strategies based on observations in SARS-CoV and MERS-CoV should be used with caution. Our findings provide a better understanding of SARS-CoV-2 regulation of cellular interferon response and a perspective on its use as a treatment. Investigation of different interferon-stimulated genes and their role in the inhibition of SARS-CoV-2 pathogenesis may direct novel antiviral strategies.