Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(13): 9188-9197, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919347

RESUMO

CaMnO3-δ-based perovskites find application in a variety of thermochemical cycles, e.g. oxygen partial pressure adjustment, chemical looping processes, and thermochemical energy storage. The applicability of these materials is governed by their thermodynamic and kinetic properties. Therefore, tunability of these properties is desirable to adapt the material to the required conditions. In this study, the effect of Sr content in Ca1-xSrxMnO3-δ on thermodynamics and kinetics is investigated by thermogravimetric analysis. The thermodynamics are measured in the temperature range of 873 K to 1473 K with oxygen partial pressures of 1 × 10-4 bar to 0.8 bar. The oxidation kinetics were characterized in the temperature range from 473 K to 673 K with oxygen partial pressures of 0.01 bar to 1 bar. The reduction kinetics were very rapid in the temperature range of 873 K to 1023 K, with the measured rates limited by the constraints of the measurement device. The results show that with increasing Sr content the structural changes of the material decrease the reduction enthalpy and the oxidation activation energy. This not only leads to a tunability of material properties, but can also be used to predict changes of these properties when only the structural changes are known.

2.
Angew Chem Int Ed Engl ; 62(32): e202218850, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637348

RESUMO

Hydrogen (H2 ) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon-neutral standards. The share of green H2 is still too low to meet the net-zero target, while the demand for high-quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high-quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon-neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.

3.
Phys Chem Chem Phys ; 24(45): 27976-27988, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373742

RESUMO

Perovskite oxides of the general formula ABO3-δ, with A and B being metal cations, present themselves in various crystal structures that originate from a distorted ideal cubic perovskite. Understanding how composition, temperature, atmosphere and reduction extent of these non-stoichiometric redox materials induce structural changes on an atomic, as well as macroscopic, level is crucial to transfer newly developed materials to industrial scale applications in the redox-based energy conversion sector. Herein, Ca1-xSrxMnO3-δ (x ∈ [0,0.2]) and its micro- and macroscopic structural changes at elevated temperatures and varying oxygen partial pressure are analyzed by means of in situ high temperature XRD, DSC and dilatometry. Results are expanded by room temperature XRD of compositions with higher Sr-content up to x = 0.4. By adjusting the Sr-content, the formed crystal structure can be governed and thermal expansion can be impacted beneficially in the context of future applications utilizing monolithic structures. Phase transitions from orthorhombic to cubic were found to shift from 900 °C to 830 °C under air and to even lower temperatures under 1% O2 atmosphere. Small amounts of Sr-content (5-10%) stabilize the macroscopic structural integrity by improving the reversibility of the cyclic thermal expansion and contraction in a 1% O2 atmosphere. However, at Sr-contents of 20% an increased irreversible residual expansion within each thermal cycle becomes apparent and shows that such improvements do not follow a linear dependency with Sr-content, but most benefits in this context can be found at Sr-contents below 20%. The results demonstrate the sensitivity of such materials micro- and macroscopic characteristics to composition. In the context of utilization of monolithic structures, fabricated entirely from Ca1-xSrxMnO3-δ, in thermochemical or thermoelectric applications, the results have considerable significance as minor A-site Sr-substitution can substantially improve macroscopic stability of monolithic structures over multiple thermal cycles. Besides the often solely regarded thermodynamic characteristic, this work demonstrates the importance to consider the impact of composition on structural behavior in materials design processes including perovskites for thermochemical applications.

4.
Sci Rep ; 13(1): 5148, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36990997

RESUMO

The Martian atmosphere contains 0.16% oxygen, which is an example of an in-situ resource that can be used as precursor or oxidant for propellants, for life support systems and potentially for scientific experiments. Thus, the present work is related to the invention of a process to concentrate oxygen in the oxygen-deficient extraterrestrial atmosphere by means of a thermochemical process and the determination of a suitable best-case apparatus design to carry out the process. The perovskite oxygen pumping (POP) system uses the underlying chemical process, which is based on the temperature-dependent chemical potential of oxygen on multivalent metal oxide, to release and absorb oxygen in response to temperature swings. The primary goal of this work is therefore to identify suitable materials for the oxygen pumping system and to optimize the oxidation-reduction temperature and time, required to operate the system, to produce 2.25 kg of oxygen per hour under the Martian most-extreme environmental conditions and based on the thermochemical process concept. Radioactive materials such as 244Cm, 238Pu and 90Sr are analyzed as a heating source for the operation of the POP system, and critical aspects of the technology as well as weaknesses and uncertainties related to the operational concept are identified.

5.
Materials (Basel) ; 6(2): 421-436, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28809316

RESUMO

In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC) honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM) with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO2, zircon (ZrSiO4), iron silicide (FeSi) and hercynite (FeAl2O4) indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate. The investigations showed that the ferrite is mainly reduced through reaction with silicon (Si), which is present in the SiSiC matrix, and silicon carbide (SiC). These results led to the formulation of a new redox mechanism for this system in which Zn-ferrite is reduced through Si forming silicon dioxide (SiO2) and through SiC forming SiO2 and carbon monoxide. A decline of hydrogen production within the first 20 cycles is suggested to be due to the growth of a silicon dioxide and zircon layer which acts as a diffusion barrier for the reacting specie.

6.
Science ; 341(6145): 470-1, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23908215
7.
Science ; 329(5993): 773-4, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20705841
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA