Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(2): 784-801, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37052387

RESUMO

PURPOSE: Peripheral nerve stimulation (PNS) limits the image encoding performance of both body gradient coils and the latest generation of head gradients. We analyze a variety of head gradient design aspects using a detailed PNS model to guide the design process of a new high-performance asymmetric head gradient to raise PNS thresholds and maximize the usable image-encoding performance. METHODS: A novel three-layer coil design underwent PNS optimization involving PNS predictions of a series of candidate designs. The PNS-informed design process sought to maximize the usable parameter space of a coil with <10% nonlinearity in a 22 cm region of linearity, a relatively large inner diameter (44 cm), maximum gradient amplitude of 200 mT/m, and a high slew rate of 900 T/m/s. PNS modeling allowed identification and iterative adjustment of coil features with beneficial impact on PNS such as the number of winding layers, shoulder accommodation strategy, and level of asymmetry. PNS predictions for the final design were compared to measured thresholds in a constructed prototype. RESULTS: The final head gradient achieved up to 2-fold higher PNS thresholds than the initial design without PNS optimization and compared to existing head gradients with similar design characteristics. The inclusion of a third intermediate winding layer provided the additional degrees of freedom necessary to improve PNS thresholds without significant sacrifices to the other design metrics. CONCLUSION: Augmenting the design phase of a new high-performance head gradient coil by PNS modeling dramatically improved the usable image-encoding performance by raising PNS thresholds.


Assuntos
Imageamento por Ressonância Magnética , Nervos Periféricos , Imageamento por Ressonância Magnética/métodos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiologia , Desenho de Equipamento
2.
Magn Reson Med ; 84(6): 3117-3127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573807

RESUMO

PURPOSE: Diffusion weighted imaging (DWI) is commonly limited by low signal-to-noise ratio (SNR) as well as motion artifacts. To address this limitation, a method that allows to maximize the achievable signal yield and increase the resolution in motion robust single-shot DWI is presented. METHODS: DWI was performed on a 3T scanner equipped with a recently developed gradient insert (gradient strength: 200 mT/m, slew rate: 600 T/m/s). To further shorten the echo time, Stejskal-Tanner diffusion encoding with a single-shot spiral readout was implemented. To allow non-Cartesian image reconstruction using such strong and fast gradients, the characterization of eddy current and concomitant field effects was performed based on field-camera measurements. RESULTS: An echo time of only 19 ms was achieved for a b-factor of 1000 s/mm2 . An in-plane resolution of 0.68 mm was encoded by a single-shot spiral readout of 40.5 ms using 3-fold undersampling. The resulting images did not suffer from off-resonance artifacts and T 2 ∗ blurring that are common to single-shot images acquired with regular gradient systems. CONCLUSION: Spiral diffusion imaging using a head gradient system, together with an accurate characterization of the encoding process allows for a substantial reduction of the echo time, and improves the achievable resolution in motion-insensitive single-shot DWI.


Assuntos
Encéfalo , Imagem Ecoplanar , Artefatos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador
3.
Magn Reson Med ; 84(2): 751-761, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961966

RESUMO

PURPOSE: To demonstrate the utility of a high-performance gradient insert for ultrafast MRI of the human head. METHODS: EPI was used for the first time with a readout gradient amplitude of 100 mT/m, 1200 T/m/s slew rate, and nearly 1 MHz signal bandwidth for human head scanning. To avoid artefacts due to eddy currents, the magnetic field was dynamically monitored with NMR probes at multiple points, modeled by solid harmonics up to fifth order, and included in the image reconstruction. An approximation of a negligible intra-echo effect of the eddy currents was made to accelerate the high-order reconstruction. The field monitoring-based approach was compared with a recently proposed phase error estimation from separate reconstructions of even and odd echoes. RESULTS: Images obtained with the gradient insert have significantly lower distortions than it is the case with the whole body 30 mT/m, 200 T/m/s gradients of the same system. However, eddy currents of high spatial order must be properly characterized and corrected for in order to avoid a persistent 2D Nyquist ghost. Multi-position monitoring proves to be a robust method to measure the eddy currents and allows higher undersampling rates than the image-based approach. The proposed approximation of the eddy currents effect allows a significant acceleration of the high-order reconstruction by a separate processing of each spatial dimension. CONCLUSION: Strong gradients with adequate switching rates are highly beneficial for the quality of EPI provided that robust measures are taken to include the contribution of eddy currents to the image encoding.


Assuntos
Artefatos , Imagem Ecoplanar , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Campos Magnéticos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA