RESUMO
BACKGROUND: Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers due to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of chia seeds' fatty acids and proteins have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE: This review article aims to provide an overview of the botanical, morphological, and biochemical features of chia plants, seeds, and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical, and agricultural applications of chia. In this context, we discuss the latest research on chia, as well as the questions that remain unanswered, and identify areas that require further exploration. CONCLUSIONS: Nutraceutical compounds associated with significant health benefits including ω-3 PUFAs, proteins, and phenolic compounds with antioxidant activity have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial, and antifungal effects of chia seeds. The recently published genome of chia and gene editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection, and large-scale transcriptomic datasets for chia.
RESUMO
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
RESUMO
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Assuntos
Lipídeos de Membrana , Mesembryanthemum , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Estresse Salino , Plantas Tolerantes a Sal/metabolismoRESUMO
This corrects the article DOI: 10.1038/nature21370.
RESUMO
Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.
Assuntos
Chenopodium quinoa/genética , Genoma de Planta/genética , Processamento Alternativo/genética , Diploide , Evolução Molecular , Pool Gênico , Anotação de Sequência Molecular , Mutação , Poliploidia , Saponinas/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/metabolismoRESUMO
Declining insect population sizes are provoking grave concern around the world as insects play essential roles in food production and ecosystems. Environmental contamination by intense insecticide usage is consistently proposed as a significant contributor, among other threats. Many studies have demonstrated impacts of low doses of insecticides on insect behavior, but have not elucidated links to insecticidal activity at the molecular and cellular levels. Here, the histological, physiological, and behavioral impacts of imidacloprid are investigated in Drosophila melanogaster, an experimental organism exposed to insecticides in the field. We show that oxidative stress is a key factor in the mode of action of this insecticide at low doses. Imidacloprid produces an enduring flux of Ca2+ into neurons and a rapid increase in levels of reactive oxygen species (ROS) in the larval brain. It affects mitochondrial function, energy levels, the lipid environment, and transcriptomic profiles. Use of RNAi to induce ROS production in the brain recapitulates insecticide-induced phenotypes in the metabolic tissues, indicating that a signal from neurons is responsible. Chronic low level exposures in adults lead to mitochondrial dysfunction, severe damage to glial cells, and impaired vision. The potent antioxidant, N-acetylcysteine amide (NACA), reduces the severity of a number of the imidacloprid-induced phenotypes, indicating a causal role for oxidative stress. Given that other insecticides are known to generate oxidative stress, this research has wider implications. The systemic impairment of several key biological functions, including vision, reported here would reduce the resilience of insects facing other environmental challenges.
Assuntos
Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Neurônios/efeitos dos fármacos , Nitrocompostos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Imidazóis/análise , Imidazóis/toxicidade , Inseticidas/análise , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neonicotinoides/análise , Neurônios/metabolismo , Nitrocompostos/análise , Estresse Oxidativo/efeitos dos fármacosRESUMO
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Lipidômica/métodos , Lipídeos/análise , Visualização de Dados , Metabolismo Energético , Glucuronídeos/análise , Glucuronídeos/metabolismo , Metabolismo dos Lipídeos , Fotossíntese , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massas em Tandem/métodos , Triglicerídeos/metabolismoRESUMO
Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high-light, water deficit and salt treatments. We used untargeted gas chromatography-mass spectrometry (GC-MS) to analyse metabolites and untargeted and targeted liquid chromatography-MS (LC-MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high-light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.
Assuntos
Chenopodium quinoa/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Células Vegetais/metabolismo , Epiderme Vegetal/metabolismo , Chenopodium quinoa/química , Lipidômica , Células Vegetais/química , Epiderme Vegetal/química , Cloreto de Sódio/metabolismo , Estresse FisiológicoRESUMO
Soil salinity has a serious impact on plant growth and agricultural yield. Inoculation of crop plants with fungal endophytes is a cost-effective way to improve salt tolerance. We used metabolomics to study how Trichoderma harzianum T-22 alleviates NaCl-induced stress in two barley (Hordeum vulgare L.) cultivars, Gairdner and Vlamingh, with contrasting salinity tolerance. GC-MS was used to analyse polar metabolites and LC-MS to analyse lipids in roots during the early stages of interaction with Trichoderma. Inoculation reversed the severe effects of salt on root length in sensitive cv. Gairdner and, to a lesser extent, improved root growth in more tolerance cv. Vlamingh. Biochemical changes showed a similar pattern in inoculated roots after salt treatment. Sugars increased in both cultivars, with ribulose, ribose, and rhamnose specifically increased by inoculation. Salt stress caused large changes in lipids in roots but inoculation with fungus greatly reduced the extent of these changes. Many of the metabolic changes in inoculated cv. Gairdner after salt treatment mirror the response of uninoculated cv. Vlamingh, but there are some metabolites that changed in both cultivars only after fungal inoculation. Further study is required to determine how these metabolic changes are induced by fungal inoculation.
Assuntos
Hordeum , Trichoderma , Hypocreales , Lipídeos , Raízes de Plantas , Salinidade , Tolerância ao Sal , Estresse FisiológicoRESUMO
Pesticides may manipulate plant physiology as non-target organisms. In this study, we examined biochemical responses of pistachio plants (Pistacia vera L.) to imidacloprid and phosalone as common pesticides used to control pistachio psyllids. Enzymatic characterization in treated plants with pesticides showed greater specific activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, phenylalanine ammonia-lyase, glutathione reductase, and glutathione S-transferase compared with untreated plants during 14 days after treatment. Further experiments displayed elevated levels of total phenols and total proteins coupled with significant increases in proline and total soluble carbohydrate contents in treated plants in comparison to untreated plants. Moreover, pesticide treatment leads to a significant decrease in polyphenol oxidase activity. Nevertheless, no significant changes in contents of hydrogen peroxide, malondialdehyde, total chlorophyll, and electrolyte leakage index were obtained in treated plants. Pesticides' impacts on host plant physiology resulted in similar responses between two pesticides with differences in peak days. Overall, the findings of this study provide an insight into the side effects of phosalone and imidacloprid, chemicals with no specific target site in plants, on the physiology and biochemistry of pistachio plants at recommended rates.
Assuntos
Praguicidas , Pistacia , Antioxidantes , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Praguicidas/toxicidade , Pistacia/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Assuntos
Aclimatação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Temperatura Baixa , Proteoma/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteoma/análise , Proteínas Ribossômicas/genética , Ribossomos/genéticaRESUMO
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with complex symptomology. In addition to a predisposition to tumors, children with NF1 can present with reduced muscle mass, global muscle weakness, and impaired motor skills, which can have a significant impact on quality of life. Genetic mouse models have shown a lipid storage disease phenotype may underlie muscle weakness in NF1. Herein we confirm that biopsy specimens from six individuals with NF1 similarly manifest features of a lipid storage myopathy, with marked accumulation of intramyocellular lipid, fibrosis, and mononuclear cell infiltrates. Intramyocellular lipid was also correlated with reductions in neurofibromin protein expression by western analysis. An RNASeq profile of Nf1null muscle from a muscle-specific Nf1 knockout mouse (Nf1MyoD-/-) revealed alterations in genes associated with glucose regulation and cell signaling. Comparison by lipid mass spectrometry demonstrated that Nf1null muscle specimens were enriched for long chain fatty acid (LCFA) containing neutral lipids, such as cholesterol esters and triacylglycerides, suggesting fundamentally impaired LCFA metabolism. The subsequent generation of a limb-specific Nf1 knockout mouse (Nf1Prx1-/-) recapitulated all observed features of human NF1 myopathy, including lipid storage, fibrosis, and muscle weakness. Collectively, these insights led to the evaluation of a dietary intervention of reduced LCFAs, and enrichment of medium-chain fatty acids (MCFAs) with L-carnitine. Following 8-weeks of dietary treatment, Nf1Prx1-/- mice showed a 45% increase in maximal grip strength, and a 71% reduction in intramyocellular lipid staining compared with littermates fed standard chow. These data link NF1 deficiency to fundamental shifts in muscle metabolism, and provide strong proof of principal that a dietary intervention can ameliorate symptoms.
Assuntos
Doenças Musculares/dietoterapia , Neurofibromatose 1/dietoterapia , Adolescente , Adulto , Animais , Carnitina/uso terapêutico , Criança , Pré-Escolar , Ácidos Graxos/uso terapêutico , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Debilidade Muscular/patologia , Debilidade Muscular/terapia , Doenças Musculares/genética , Doenças Musculares/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Qualidade de Vida , Adulto JovemRESUMO
Endemism and rarity have long intrigued scientists. We focused on a rare endemic and critically-endangered species in a global biodiversity hotspot, Grevillea thelemanniana (Proteaceae). We carried out plant and soil analyses of four Proteaceae, including G. thelemanniana, and combined these with glasshouse studies. The analyses related to hydrology and plant water relations as well as soil nutrient concentrations and plant nutrition, with an emphasis on sodium (Na) and calcium (Ca). The local hydrology and matching plant traits related to water relations partially accounted for the distribution of the four Proteaceae. What determined the rarity of G. thelemanniana, however, was its accumulation of Ca. Despite much higher total Ca concentrations in the leaves of the rare G. thelemanniana than in the common Proteaceae, very few Ca crystals were detected in epidermal or mesophyll cells. Instead of crystals, G. thelemanniana epidermal cell vacuoles contained exceptionally high concentrations of noncrystalline Ca. Calcium ameliorated the negative effects of Na on the very salt-sensitive G. thelemanniana. Most importantly, G. thelemanniana required high concentrations of Ca to balance a massively accumulated feeding-deterrent carboxylate, trans-aconitate. This is the first example of a calcicole species accumulating and using Ca to balance accumulation of an antimetabolite.
Assuntos
Proteaceae , Cálcio , Células do Mesofilo , Folhas de Planta , SoloRESUMO
Salinity-induced metabolic, ionic, and transcript modifications in plants have routinely been studied using whole plant tissues, which do not provide information on spatial tissue responses. The aim of this study was to assess the changes in the lipid profiles in a spatial manner and to quantify the changes in the elemental composition in roots of seedlings of four barley cultivars before and after a short-term salt stress. We used a combination of liquid chromatography-tandem mass spectrometry, inductively coupled plasma mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry imaging, and reverse transcription - quantitative real time polymerase chain reaction platforms to examine the molecular signatures of lipids, ions, and transcripts in three anatomically different seminal root tissues before and after salt stress. We found significant changes to the levels of major lipid classes including a decrease in the levels of lysoglycerophospholipids, ceramides, and hexosylceramides and an increase in the levels of glycerophospholipids, hydroxylated ceramides, and hexosylceramides. Our results revealed that modifications to lipid and transcript profiles in plant roots in response to a short-term salt stress may involve recycling of major lipid species, such as phosphatidylcholine, via resynthesis from glycerophosphocholine.
Assuntos
Hordeum/metabolismo , Lipidômica/métodos , Lipídeos/análise , Raízes de Plantas/metabolismo , Salinidade , Estresse Salino/fisiologia , Ceramidas/análise , Cromatografia Líquida/métodos , Regulação da Expressão Gênica de Plantas , Glicerofosfolipídeos/análise , Hordeum/efeitos dos fármacos , Hordeum/genética , Íons/metabolismo , Metabolismo dos Lipídeos/genética , Metaboloma , Metabolômica , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estresse Salino/genética , Sais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root-microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d-threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots.
Assuntos
Armillaria/crescimento & desenvolvimento , Armillaria/metabolismo , Eucalyptus/microbiologia , Metabolômica , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Álcoois Açúcares/metabolismo , Austrália , Doenças das Plantas/microbiologia , Plântula , Solo , Microbiologia do Solo , SimbioseRESUMO
The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.
Assuntos
Dinoflagellida/genética , Anêmonas-do-Mar/genética , Simbiose/genética , Animais , Recifes de Corais , Dinoflagellida/metabolismo , Dinoflagellida/fisiologia , Metaboloma , Estresse Oxidativo , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/fisiologia , Simbiose/imunologia , TranscriptomaRESUMO
KEY MESSAGE: Degradation of nitrogen-rich purines is tightly and oppositely regulated under drought and low nitrogen supply in bread wheat. Allantoin is a key target metabolite for improving nitrogen homeostasis under stress. The metabolite allantoin is an intermediate of the catabolism of purines (components of nucleotides) and is known for its housekeeping role in nitrogen (N) recycling and also for its function in N transport and storage in nodulated legumes. Allantoin was also shown to differentially accumulate upon abiotic stress in a range of plant species but little is known about its role in cereals. To address this, purine catabolic pathway genes were identified in hexaploid bread wheat and their chromosomal location was experimentally validated. A comparative study of two Australian bread wheat genotypes revealed a highly significant increase of allantoin (up to 29-fold) under drought. In contrast, allantoin significantly decreased (up to 22-fold) in response to N deficiency. The observed changes were accompanied by transcriptional adjustment of key purine catabolic genes, suggesting that the recycling of purine-derived N is tightly regulated under stress. We propose opposite fates of allantoin in plants under stress: the accumulation of allantoin under drought circumvents its degradation to ammonium (NH4+) thereby preventing N losses. On the other hand, under N deficiency, increasing the NH4+ liberated via allantoin catabolism contributes towards the maintenance of N homeostasis.
Assuntos
Alantoína/metabolismo , Nitrogênio/metabolismo , Purinas/metabolismo , Triticum/metabolismo , Água , Alantoína/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Homeostase , Metaboloma , Estresse Fisiológico , Sintenia/genética , Triticum/genéticaRESUMO
INTRODUCTION: Frost events lead to A$360 million of yield losses annually to the Australian wheat industry, making improvement of chilling and frost tolerance an important trait for breeding. OBJECTIVES: This study aimed to use metabolomics and lipidomics to explore genetic variation in acclimation potential to chilling and to identify metabolite markers for chilling tolerance in wheat. METHODS: We established a controlled environment screening assay that is able to reproduce field rankings of wheat germplasm for chilling and frost tolerance. This assay, together with targeted metabolomics and lipidomics approaches, were used to compare metabolite and lipid levels in flag leaves of two wheat varieties with contrasting chilling tolerance. RESULTS: The sensitive variety Wyalkatchem showed a strong reduction in amino acids after the first cold night, followed by accumulation of osmolytes such as fructose, glucose, putrescine and shikimate over a 4-day period. Accumulation of osmolytes is indicative of acclimation to water stress in Wyalkatchem. This response was not observed for tolerant variety Young. The two varieties also displayed significant differences in lipid accumulation. Variation in two lipid clusters, resulted in a higher unsaturated to saturated lipid ratio in Young after 4 days cold treatment and the lipids PC(34:0), PC(34:1), PC(35:1), PC(38:3), and PI(36:4) were the main contributors to the unsaturated to saturated ratio change. This indicates that Young may have superior ability to maintain membrane fluidity following cold exposure, thereby avoiding membrane damage and water stress observed for Wyalkatchem. CONCLUSION: Our study suggests that metabolomics and lipidomics markers could be used as an alternative phenotyping method to discriminate wheat varieties with differences in cold acclimation.
Assuntos
Adaptação Fisiológica , Resposta ao Choque Frio , Metabolômica , Triticum/metabolismo , Lipidômica , FenótipoRESUMO
INTRODUCTION: German shepherd dogs (GSDs) are a popular breed affected by numerous disorders. Few studies have explored genetic variations that influence canine blood metabolite levels. OBJECTIVES: To investigate genetic variants affecting the natural metabolite variation in GSDs. METHODS: A total of 82 healthy GSDs were genotyped on the Illumina CanineHD Beadchip, assaying 173,650 markers. For each dog, 74 metabolites were measured through liquid and gas chromatography mass spectrometry (LC-MS and GC-MS) and were used as phenotypes for genome-wide association analyses (GWAS). Sliding window and homozygosity analyses were conducted to fine-map regions of interest, and to identify haplotypes and gene dosage effects. RESULTS: Summary statistics for 74 metabolites in this population of GSDs are reported. Forty-one metabolites had significant associations at a false discovery rate of 0.05. Two associations were located around genes which encode for enzymes for the relevant metabolites: 4-hydroxyproline was significantly associated to D-amino acid oxidase (DAO), and threonine to L-threonine 3-dehydrogenase (LOC477365). Three of the top ten haplotypes associated to 4-hydroxyproline included at least one SNP on DAO. These haplotypes occurred only in dogs with the highest 15 measurements of 4-hydroxyproline, ranging in frequency from 16.67 to 20%. None of the dogs were homozygous for these haplotypes. The top two haplotypes associated to threonine included SNPs on LOC477365 and were also overrepresented in dogs with the highest 15 measurements of threonine. These haplotypes occurred at a frequency of 90%, with 80% of these dogs homozygous for the haplotypes. In dogs with the lowest 15 measurements of threonine, the haplotypes occurred at a frequency of 26.67% and 0% homozygosity. CONCLUSION: DAO and LOC477365 were identified as candidate genes affecting the natural plasma concentration of 4-hydroxyproline and threonine, respectively. Further investigations are needed to validate the effects of the variants on these genes.