Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
Antimicrob Agents Chemother ; : e0161923, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712935

RESUMO

We used whole-genome sequencing to analyze a collection of 35 fluconazole-resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two persistent clinical lineages were identified. We identified copy number variation (CNV) of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show that the annotated telomeric gene CDR1B is actually an artifactual in silico fusion of two highly similar neighboring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased the expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

2.
PLoS Genet ; 17(9): e1009582, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591857

RESUMO

The most commonly used antifungal drugs are the azole compounds, which interfere with biosynthesis of the fungal-specific sterol: ergosterol. The pathogenic yeast Candida glabrata commonly acquires resistance to azole drugs like fluconazole via mutations in a gene encoding a transcription factor called PDR1. These PDR1 mutations lead to overproduction of drug transporter proteins like the ATP-binding cassette transporter Cdr1. In other Candida species, mutant forms of a transcription factor called Upc2 are associated with azole resistance, owing to the important role of this protein in control of expression of genes encoding enzymes involved in the ergosterol biosynthetic pathway. Recently, the C. glabrata Upc2A factor was demonstrated to be required for normal azole resistance, even in the presence of a hyperactive mutant form of PDR1. Using genome-scale approaches, we define the network of genes bound and regulated by Upc2A. By analogy to a previously described hyperactive UPC2 mutation found in Saccharomyces cerevisiae, we generated a similar form of Upc2A in C. glabrata called G898D Upc2A. Analysis of Upc2A genomic binding sites demonstrated that wild-type Upc2A binding to target genes was strongly induced by fluconazole while G898D Upc2A bound similarly, irrespective of drug treatment. Transcriptomic analyses revealed that, in addition to the well-described ERG genes, a large group of genes encoding components of the translational apparatus along with membrane proteins were responsive to Upc2A. These Upc2A-regulated membrane protein-encoding genes are often targets of the Pdr1 transcription factor, demonstrating the high degree of overlap between these two regulatory networks. Finally, we provide evidence that Upc2A impacts the Pdr1-Cdr1 system and also modulates resistance to caspofungin. These studies provide a new perspective of Upc2A as a master regulator of lipid and membrane protein biosynthesis.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/metabolismo , Farmacorresistência Fúngica/genética , Fatores de Transcrição/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Imunoprecipitação da Cromatina , Fluconazol/farmacologia , Mutação com Ganho de Função , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Genes Fúngicos , Mutação , Transcrição Gênica/genética , Transcriptoma
3.
Tech Coloproctol ; 28(1): 83, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985353

RESUMO

BACKGROUND: Ureteric injury (UI) is an infrequent but serious complication of colorectal surgery. Prophylactic ureteric stenting is employed to avoid UI, yet its efficacy remains debated. Intraoperative indocyanine green fluorescence imaging (ICG-FI) has been used to facilitate ureter detection. This study aimed to investigate the role of ICG-FI in identification of ureters during colorectal surgery and its impact on the incidence of UI. METHODS: A retrospective cohort study involving 556 consecutive patients who underwent colorectal surgery between 2018 and 2023 assessed the utility of routine prophylactic ureteric stenting with adjunctive ICG-FI. Patients with ICG-FI were compared to those without ICG-FI. Demographic data, operative details, and postoperative morbidity were analyzed. Statistical analysis included univariable regression. RESULTS: Ureteric ICG-FI was used in 312 (56.1%) patients, whereas 43.9% were controls. Both groups were comparable in terms of demographics except for a higher prevalence of prior abdominal surgeries in the ICG-FI group. Although intraoperative visualization was significantly higher in the ICG-FI group (95.3% vs 89.1%; p = 0.011), the incidence of UI was similar between groups (0.3% vs 0.8%; p = 0.585). Postoperative complications were similar between the two groups. Median stent insertion time was longer in the ICG-FI group (32 vs 25 min; p = 0.001). CONCLUSION: Ureteric ICG-FI improved intraoperative visualization of the ureters but was not associated with a reduced UI rate. Median stent insertion time increased with use of ureteric ICG-FI, but total operative time did not. Despite its limitations, this study is the largest of its kind suggesting that ureteric ICG-FI may be a valuable adjunct to facilitate  ureteric visualization during colorectal surgery.


Assuntos
Verde de Indocianina , Imagem Óptica , Stents , Ureter , Humanos , Estudos Retrospectivos , Feminino , Masculino , Ureter/lesões , Ureter/cirurgia , Pessoa de Meia-Idade , Idoso , Imagem Óptica/métodos , Cirurgia Colorretal/efeitos adversos , Cirurgia Colorretal/métodos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Corantes , Complicações Intraoperatórias/prevenção & controle , Complicações Intraoperatórias/etiologia , Complicações Intraoperatórias/epidemiologia , Incidência , Adulto
4.
Tech Coloproctol ; 28(1): 7, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079014

RESUMO

BACKGROUND: First described by Parks and Nicholls in 1978, the ileal pouch-anal anastomosis (IPAA) has revolutionized the treatment of mucosal ulcerative colitis (MUC) and familial adenomatous polyposis (FAP). IPAA is fraught with complications, one of which is pouch-vaginal fistulas (PVF), a rare but challenging complication noted in 3.9-15% of female patients. Surgical treatment success approximates 50%. Gracilis muscle interposition (GMI) is a promising technique that has shown good results with other types of perineal fistulas. We present the results from our institution and a comprehensive literature review. METHODS: A retrospective observational study including all patients with a PVF treated with GMI at our institution from December 2018-January 2000. Primary outcome was complete healing after ileostomy closure. RESULTS: Nine patients were included. Eight of nine IPAAs (88.9%) were performed for MUC, and one for FAP. A subsequent diagnosis of Crohn's disease was made in five patients. Initial success occurred in two patients (22.2%), one patient was lost to follow-up and seven patients, after further procedures, ultimately achieved healing (77.8%). Four of five patients with Crohn's achieved complete healing (80%). CONCLUSION: Surgical healing rates quoted in the literature for PVFs are approximately 50%. The initial healing rate was 22.2% and increased to 77.8% after subsequent surgeries, while it was 80% in patients with Crohn's disease. Given this, gracilis muscle interposition may have a role in the treatment of pouch-vaginal fistulas.


Assuntos
Polipose Adenomatosa do Colo , Colite Ulcerativa , Bolsas Cólicas , Doença de Crohn , Músculo Grácil , Proctocolectomia Restauradora , Fístula Vaginal , Humanos , Feminino , Estudos de Coortes , Doença de Crohn/complicações , Bolsas Cólicas/efeitos adversos , Recidiva Local de Neoplasia/cirurgia , Proctocolectomia Restauradora/efeitos adversos , Colite Ulcerativa/cirurgia , Colite Ulcerativa/complicações , Fístula Vaginal/etiologia , Fístula Vaginal/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Polipose Adenomatosa do Colo/cirurgia , Estudos Observacionais como Assunto
5.
Antimicrob Agents Chemother ; 66(7): e0028922, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35699442

RESUMO

Candida parapsilosis is a common cause of invasive candidiasis worldwide and is the most commonly is7olated Candida species among pediatric and neonatal populations. Previous work has demonstrated that nonsynonymous mutations in the gene encoding the putative transcription factor CpMrr1 can influence fluconazole susceptibility. However, the direct contribution of these mutations and how they influence fluconazole resistance in clinical isolates are poorly understood. We identified 7 nonsynonymous CpMRR1 mutations in 12 isolates from within a collection of 35 fluconazole-resistant clinical isolates. The mutations leading to the A854V, R479K, and I283R substitutions were further examined and found to be activating mutations leading to increased fluconazole resistance. In addition to CpMDR1, we identified two other genes, one encoding a major facilitator superfamily (MFS) transporter (CpMDR1B, CPAR2_603010) and one encoding an ATP-binding cassette (ABC) transporter (CpCDR1B, CPAR2_304370), as being upregulated in isolates carrying CpMRR1-activating mutations. Overexpression of CpMDR1 in a susceptible strain and disruption in resistant clinical isolates that overexpress CpMDR1 had little to no effect on fluconazole susceptibility. Conversely, overexpression of either CpMDR1B or CpCDR1B increased resistance, and disruption in clinical isolates overexpressing these genes decreased fluconazole resistance. Our findings suggest that activating mutations in CpMRR1 represent important genetic determinants of fluconazole resistance in clinical isolates of C. parapsilosis, and unlike what is observed in Candida albicans, this is primarily driven by upregulation of both MFS (CpMdr1B) and ABC (CpCdr1B) transporters.


Assuntos
Candida parapsilosis , Farmacorresistência Fúngica , Fluconazol , Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/metabolismo , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/metabolismo , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana
6.
Mol Hum Reprod ; 27(1)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33394050

RESUMO

The etiology and pathogenesis of endometriosis are complex with both genetic and environmental factors contributing to disease risk. Genome-wide association studies (GWAS) have identified multiple signals in the estrogen receptor 1 (ESR1) region associated with endometriosis and other reproductive traits and diseases. In addition, candidate gene association studies identified signals in the ESR1 region associated with endometriosis risk suggesting genetic regulation of genes in this region may be important for reproductive health. This study aimed to investigate hormonal and genetic regulation of genes in the ESR1 region in human endometrium. Changes in serum oestradiol and progesterone concentrations and expression of hormone receptors ESR1 and progesterone receptor (PGR) were assessed in endometrial samples from 135 women collected at various stages of the menstrual cycle. Correlation between hormone concentrations, receptor expression and expression of genes in the ESR1 locus was investigated. The effect of endometriosis risk variants on expression of genes in the region was analyzed to identify gene targets. Hormone concentrations and receptor expression varied significantly across the menstrual cycle. Expression of genes in the ESR1 region correlated with progesterone concentration; however, they were more strongly correlated with expression of ESR1 and PGR suggesting coregulation of genes. There was no evidence that endometriosis risk variants directly regulated expression of genes in the region. Limited sample size and cellular heterogeneity in endometrial tissue may impact the ability to detect significant genetic effects on gene expression. Effects of these variants should be validated in a larger dataset and in relevant individual cell types.


Assuntos
Endometriose/genética , Endométrio/metabolismo , Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Endometriose/sangue , Estradiol/sangue , Feminino , Variação Genética , Humanos , Ciclo Menstrual/metabolismo , Progesterona/sangue , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Risco
7.
BJOG ; 128(4): 657-665, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32757329

RESUMO

OBJECTIVE: To estimate the prevalence and incidence of endometriosis among Australian women. DESIGN: Population-based cohort study linked to administrative health records. SETTING: Secondary analysis of seven surveys collected between 2000 and 2018 from a population-based cohort study. POPULATION: A total of 13 508 Australian women, born 1973-78, from a prospective cohort study of 14 247 women conducted between 1996 and 2018. METHODS: During 2000 and 2018, self-reported longitudinal survey data were linked to three administrative health databases to separately identify women with clinically confirmed or suspected endometriosis across the multiple data sources. MAIN OUTCOME MEASURES: Prevalence and incidence of clinically confirmed endometriosis in the cohort were first estimated using national hospital data. Data were then combined with other administrative health databases and the survey data to capture all clinically confirmed and suspected diagnoses of endometriosis. RESULTS: The cumulative prevalence of clinically confirmed endometriosis was 6.0% (95% CI 5.8-6.2%) by age 40-44 years. The cumulative prevalence increased to 11.4% (95% CI 11.1-11.7%) when adding diagnoses of clinically suspected endometriosis. Age-specific incidence estimates peaked to 6 per 1000 person-years at age 30-34 years. CONCLUSIONS: Among 13 508 Australian women followed for 20 years, one in nine women had clinically confirmed or suspected endometriosis by the age of 44, with most diagnosed during their early thirties. Endometriosis is a significant public health issue requiring increased surveillance, clinical awareness and management. Efforts to expand knowledge on the aetiology of the disease and optimal methods for disease management are crucial to women's health. TWEETABLE ABSTRACT: In a national study of 13 508 Australian women, one in nine women were diagnosed with endometriosis by age 44.


Assuntos
Endometriose/epidemiologia , Adulto , Austrália/epidemiologia , Endometriose/diagnóstico , Feminino , Inquéritos Epidemiológicos , Humanos , Incidência , Estudos Longitudinais , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Autorrelato
8.
J Antimicrob Chemother ; 75(2): 257-270, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603213

RESUMO

Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans , Candidíase , Farmacorresistência Fúngica , Antifúngicos/uso terapêutico , Azóis/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
9.
Hum Reprod ; 35(12): 2701-2714, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300558

RESUMO

STUDY QUESTION: Do menstrual cycle-dependent changes occur in the histological appearance of superficial peritoneal endometriotic lesions, and are they equivalent to those observed in the eutopic endometrium? SUMMARY ANSWER: Only a small subset of superficial peritoneal endometriotic lesions exhibits some histological features in phase with menstrual cycle-related changes observed in eutopic endometrium. WHAT IS KNOWN ALREADY: Endometriotic lesions are frequently described as implants that follow menstrual cycle-related changes in morphology, as per the eutopic endometrium. This concept has been widely accepted despite the lack of conclusive published evidence. STUDY DESIGN, SIZE, DURATION: This was a retrospective cohort study of 42 patients, from across the menstrual cycle, with surgically and histologically confirmed endometriosis. Patients were a subset selected from a larger endometriosis study being conducted at the Royal Women's Hospital, Melbourne since 2012. PARTICIPANTS/MATERIALS, SETTING, METHODS: Histological features of epithelium, stroma and gland morphology were examined in haematoxylin and eosin stained sections of superficial peritoneal endometriotic lesions and matched eutopic endometrium (menstrual: n = 4, proliferative: n = 11, secretory: n = 17, hormone-treated: n = 10). At least two biopsies (average = 4, range = 2-8 biopsies) and a matched endometrial sample were analysed for each patient and results were presented per endometriotic gland profile (n = 1051). Data were analysed using mixed effects logistic regression to account for multiple patients and multiple endometriotic biopsies, each with multiple endometriotic gland profiles. This model also enabled analysis of endometriotic lesions versus eutopic endometrium. MAIN RESULTS AND THE ROLE OF CHANCE: There was considerable inter- and intra-patient variability in the morphology of superficial peritoneal endometriotic lesions. Menstrual cycle-associated changes were only observed for some features in a subset of endometriotic gland profiles. The proportion of endometriotic gland profiles with epithelial mitoses significantly increased in the proliferative phase (18% of gland profiles) relative to the menstrual phase (0% of endometriotic gland profiles) (odds ratios (OR) 9.30; 95% confidence intervals (CI) = 3.71-23.32; P < 0.001). Fewer blood-filled gland lumens were observed in the secretory phase (45% of endometriotic gland profiles) compared to the menstrual phase (67% of endometriotic gland profiles) (OR, 0.30; 95% CI = 0.11-0.79; P = 0.015). The features of the eutopic endometrium analysed in this study did not reflect the results in matched endometriotic lesions (P > 0.05). LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: This study focused on features observed in sections of superficial peritoneal lesions and these may differ from features of deep infiltrating endometriosis or ovarian endometriomas. Cycle phases were limited to menstrual, proliferative and secretory phases to allow appropriate statistical modelling. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights heterogeneity in the histological characteristics of superficial peritoneal lesions. It challenges the assumption that lesion morphology consistently reflects menstrual cycle-associated changes. STUDY FUNDING/COMPETING INTEREST(S): Research reported in this publication was supported in part by National Health and Medical Research Council (NHMRC) project grants GNT1012245, GNT1105321 and GNT1026033 (P.A.W.R., J.E.G. and S.J.H.-C.). There are no competing interests.


Assuntos
Endometriose , Doenças Peritoneais , Endométrio , Feminino , Humanos , Ciclo Menstrual , Estudos Retrospectivos
10.
Artigo em Inglês | MEDLINE | ID: mdl-30833425

RESUMO

Mutations in genes encoding zinc cluster transcription factors (ZCFs) such as TAC1, MRR1, and UPC2 play a key role in Candida albicans azole antifungal resistance. Artificial activation of the ZCF Mrr2 has shown increased expression of the gene encoding the Cdr1 efflux pump and resistance to fluconazole. Amino acid substitutions in Mrr2 have recently been reported to contribute to fluconazole resistance in clinical isolates. In the present study, 57 C. albicans clinical isolates with elevated fluconazole MICs were examined for mutations in MRR2 and expression of CDR1 Mutations in MRR2 resulting in 15 amino acid substitutions were uniquely identified among resistant isolates, including 4 substitutions (S466L, A468G, S469T, T470N) previously reported to reduce fluconazole susceptibility. Three additional, novel amino acid substitutions (R45Q, A459T, V486M) were also discovered in fluconazole-resistant isolates. When introduced into a fluconazole-susceptible background, no change in fluconazole MIC or CDR1 expression was observed for any of the mutations found in this collection. However, introduction of an allele leading to artificial activation of Mrr2 increased resistance to fluconazole as well as CDR1 expression. Moreover, Mrr2 amino acid changes reported previously to have the strongest effect on fluconazole susceptibility and CDR1 expression also exhibited no differences in fluconazole susceptibility or CDR1 expression relative to the parent strain. While all known fluconazole resistance mechanisms are represented within this collection of clinical isolates and contribute to fluconazole resistance to different extents, mutations in MRR2 do not appear to alter CDR1 expression or contribute to resistance in any of these isolates.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Azóis/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Testes de Sensibilidade Microbiana , Mutação/genética , Fatores de Transcrição/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-30718246

RESUMO

Candida auris has rapidly emerged as a health care-associated and multidrug-resistant pathogen of global concern. In this work, we examined the relative expression of the four C. auris genes with the highest degree of homology to Candida albicansCDR1 and MDR1 among three triazole-resistant clinical isolates as compared to the triazole-susceptible genome reference clinical isolate. We subsequently utilized a novel Cas9-mediated system for genetic manipulations to delete C. aurisCDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible reference strain and observed that MICs for all clinically available triazoles decreased as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for the first time that C. aurisCDR1 and MDR1 are more highly expressed among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a significant contributor to clinical triazole resistance.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Proteína 9 Associada à CRISPR/genética , Candida/isolamento & purificação , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Microrganismos Geneticamente Modificados , Triazóis/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31383660

RESUMO

VT-1161 and VT-1598 are promising investigational tetrazole antifungals that have shown in vitro and in vivo activity against Candida and other fungi. Candida glabrata is a problematic opportunistic pathogen that is associated with high mortality in invasive infection, as well as both intrinsic and rapidly acquired antifungal resistance. The MICs of VT-1161 and VT-1598 were determined by CLSI methodology to evaluate their in vitro activities against clinical C. glabrata isolates and strains containing individual deletions of the zinc cluster transcription factor genes PDR1 and UPC2A as well as the efflux transporter genes CDR1, PDH1, and SNQ2 Overall, both tetrazoles demonstrated relative activities comparable to those of the tested triazole antifungals against clinical C. glabrata isolates (MIC range, 0.25 to 2 mg/liter and 0.5 to 2 µg/ml for VT-1161 and VT-1598, respectively). Deletion of the PDR1 gene in fluconazole-resistant matched clinical isolate SM3 abolished the decreased susceptibility phenotype completely for both VT-1161 and VT-1598, similarly to the triazoles. UPC2A deletion also increased susceptibility to both triazoles and tetrazoles but to a lesser extent than PDR1 deletion. Of the three major transporter genes regulated by Pdr1, CDR1 deletion resulted in the largest MIC reductions for all agents tested, while PDH1 and SNQ2 deletion individually impacted MICs very little. Overall, both VT-1161 and VT-1598 have comparable activities to those of the available triazoles, and decreased susceptibility to these tetrazoles in C. glabrata is driven by many of the same known resistance mechanisms.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Piridinas/farmacologia , Tetrazóis/farmacologia , Candida glabrata/genética , Candida glabrata/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-30858206

RESUMO

The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Haloperidol/farmacologia , Humanos , Morfolinas/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-30910896

RESUMO

The fungal Cyp51-specific inhibitors VT-1161 and VT-1598 have emerged as promising new therapies to combat fungal infections, including Candida spp. To evaluate their in vitro activities compared to other azoles, MICs were determined by Clinical and Laboratory Standards Institute (CLSI) method for VT-1161, VT-1598, fluconazole, voriconazole, itraconazole, and posaconazole against 68 C. albicans clinical isolates well characterized for azole resistance mechanisms and mutant strains representing individual azole resistance mechanisms. VT-1161 and VT-1598 demonstrated potent activity (geometric mean MICs ≤0.15 µg/ml) against predominantly fluconazole-resistant (≥8 µg/ml) isolates. However, five of 68 isolates exhibited MICs greater than six dilutions (>2 µg/ml) to both tetrazoles compared to fluconazole-susceptible isolates. Four of these isolates likewise exhibited high MICs beyond the upper limit of the assay for all triazoles tested. A premature stop codon in ERG3 likely explained the high-level resistance in one isolate. VT-1598 was effective against strains with hyperactive Tac1, Mrr1, and Upc2 transcription factors and against most ERG11 mutant strains. VT-1161 MICs were elevated compared to the control strain SC5314 for hyperactive Tac1 strains and two strains with Erg11 substitutions (Y132F and Y132F&K143R) but showed activity against hyperactive Mrr1 and Upc2 strains. While mutations affecting Erg3 activity appear to greatly reduce susceptibility to VT-1161 and VT-1598, the elevated MICs of both tetrazoles for four isolates could not be explained by known azole resistance mechanisms, suggesting the presence of undescribed resistance mechanisms to triazole- and tetrazole-based sterol demethylase inhibitors.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Piridinas/farmacologia , Tetrazóis/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Fatores de Transcrição/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-30783005

RESUMO

Recombinant Candida albicans CYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed in Escherichia coli and purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50 compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations. In vitro testing of select CaCYP51 mutations in C. albicans showed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50 values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Sequência de Aminoácidos , Candida albicans/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Esterol 14-Desmetilase/genética , Triazóis/farmacologia , Voriconazol/farmacologia
16.
J Antimicrob Chemother ; 74(4): 835-842, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561652

RESUMO

Invasive aspergillosis is a leading cause of morbidity and mortality among immunocompromised populations and is predicted to cause more than 200 000 life-threatening infections each year. Aspergillus fumigatus is the most prevalent pathogen isolated from patients with invasive aspergillosis, accounting for more than 60% of all cases. Currently, the only antifungal agents available with consistent activity against A. fumigatus are the mould-active triazoles and amphotericin B, of which the triazoles commonly represent both front-line and salvage therapeutic options. Unfortunately, the treatment of infections caused by A. fumigatus has recently been further complicated by the global emergence of triazole resistance among both clinical and environmental isolates. Mutations in the A. fumigatus sterol-demethylase gene cyp51A, overexpression of cyp51A and overexpression of efflux pump genes are all known to contribute to resistance, yet much of the triazole resistance among A. fumigatus still remains unexplained. Also lacking is clinical experience with therapeutic options for the treatment of triazole-resistant A. fumigatus infections and mortality associated with these infections remains unacceptably high. Thus, further research is greatly needed to both better understand the emerging threat of triazole-resistant A. fumigatus and to develop novel therapeutic strategies to combat these resistant infections.


Assuntos
Antifúngicos/farmacologia , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica , Triazóis/farmacologia , Aspergilose/mortalidade , Aspergillus fumigatus/genética , Microbiologia Ambiental , Expressão Gênica , Saúde Global , Humanos , Mutação , Prevalência
17.
Mol Hum Reprod ; 25(4): 194-205, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770928

RESUMO

Endometriotic lesions are composed in part of endometrial-like stromal cells, however, there is a shortage of immortalized human endometrial stromal cultures available for research. As genetic factors play a role in endometriosis risk, it is important that genotype is also incorporated into analysis of pathological mechanisms. Human telomerase reverse transcriptase (hTERT) immortalization (using Lenti-hTERT-green fluorescent protein virus) took place following genotype selection; 13 patients homozygous for either the risk or non-risk 'other' allele for one or more important endometriosis risk single nucleotide polymorphism on chromosome 1p36.12 (rs3820282, rs56318008, rs55938609, rs12037376, rs7521902 or rs12061255). Short tandem repeat DNA profiling validated that donor tissue matched that of the immortalized cell lines and confirmed that cultures were genetically novel. Expression of morphological markers (vimentin and cytokeratin) and key genes of interest (telomerase, estrogen and progesterone receptors and LINC00339) were examined and functional assays for cell proliferation, steroid hormone and inflammatory responses were performed for 7/13 cultures. All endometrial stromal cell lines maintained their fibroblast-like morphology (vimentin-positive) and homozygous endometriosis-risk genotype following introduction of hTERT. Furthermore, the new stromal cultures demonstrated positive and diverse responses to hormones (proliferation and decidualisation changes) and inflammation (dose-dependent response), while maintaining hormone receptor expression. In conclusion, we successfully developed a range of human endometrial stromal cell lines that carry important endometriosis-risk alleles. The wider implications of this approach go beyond advancing endometriosis research; these cell lines will be valuable tools for multiple endometrial pathologies offering a level of genetic and phenotypic diversity not previously available.


Assuntos
Endometriose/genética , Efeito Fundador , Genótipo , Células Estromais/metabolismo , Telomerase/genética , Adulto , Biomarcadores/metabolismo , Linhagem Celular Transformada , Proliferação de Células , Cromossomos Humanos Par 1/química , Cromossomos Humanos Par 1/metabolismo , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Feminino , Expressão Gênica , Homozigoto , Humanos , Queratinas/genética , Queratinas/metabolismo , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Risco , Células Estromais/patologia , Telomerase/metabolismo , Vimentina/genética , Vimentina/metabolismo
18.
Hum Reprod ; 34(12): 2456-2466, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825483

RESUMO

STUDY QUESTION: Are uterine natural killer (uNK) cell numbers and their distribution relative to endometrial arterioles altered in women with recurrent implantation failure (RIF) compared to women with embryo implantation success (IS)? SUMMARY ANSWER: uNK cell numbers and their distribution relative to endometrial arterioles are not significantly different in women with RIF compared to women in whom embryo implantation occurs successfully following IVF. WHAT IS ALREADY KNOWN: uNK cells are regulators of decidual angiogenesis and spiral arteriole remodelling during early pregnancy. Although some studies have shown that uNK cell numbers may be altered in women with RIF, the methods used to measure uNK cell numbers have proven inconsistent, making reproduction of these results difficult. It is unclear, therefore, whether the results reported so far are reproducible. Moreover, it is not known how uNK cell numbers may impact IVF outcomes. Despite the lack of conclusive evidence, uNK cell numbers are often evaluated as a prognostic criterion in women undergoing assisted reproductive procedures. STUDY DESIGN, SIZE, DURATION: Endometrial pipelle biopsies were collected 6-8 days post-LH surge in natural cycles from women with RIF (n = 14), women with IS (n = 11) and women with potential RIF at the time of the study (PRIF; n = 9) from 2013 to 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS: uNK cells (i.e. CD56+ and/or CD16+ phenotypes) and their distribution relative to endometrial arterioles were investigated by standard immunohistochemistry protocols and quantified using Aperio ScanScopeXT images digitized by ImageJ and deconvoluted into binary images for single cell quantification using a Gaussian Blur and Yen algorithm. MAIN RESULTS AND THE ROLE OF CHANCE: There was no significant difference in the cell density of CD56+ or CD16+ uNK cells in women with RIF compared to women with IS or PRIF. There was a higher proportion of uNK cells in the distal regions compared to the regions closest to the arterioles in all patient groups. Further, we identified a significant reduction in uNK cell density in women who had a previous pregnancy compared to those who had not, regardless of their current implantation status. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: Spiral arterioles could not always be accurately identified by digital image analysis; therefore, all endometrial arterioles were selected and analysed. Patient numbers for the study were low. However, as the clinical phenotypes of each patient were well defined, and endometrial dating was accurately determined by three independent pathologists, differences between patient groups with respect to the uNK numbers and distribution should have been measurable if uNK cell counts were to be useful as a prognostic marker of RIF. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that CD56+ and CD16+ uNK cell numbers are not significantly different in women with RIF in a typical cohort of women undergoing IVF. Further, prior pregnancy was associated with a significantly reduced number of uNK cells in both the RIF and IS patient groups, suggestive of a long-term pregnancy induced suppression of uNK cells. Combined, these findings do not support the clinical value of using uNK cell numbers as a prognostic indicator of implantation success with IVF treatment. STUDY FUNDING/COMPETING INTEREST(S): Funding for this work was provided by Royal Women's Hospital Foundation. P.P. was supported by an NHMRC Early Career Fellowship [TF 11/14] and W.T.T. was supported by an NHMRC Postgraduate Scholarship [1055814]. The authors do not have any competing interests with this study.


Assuntos
Implantação do Embrião/imunologia , Endométrio/imunologia , Infertilidade Feminina/imunologia , Células Matadoras Naturais , Adulto , Arteríolas/imunologia , Endométrio/irrigação sanguínea , Feminino , Humanos , Gravidez
19.
Nat Chem Biol ; 18(11): 1170-1171, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36229682
20.
Acta Neurochir (Wien) ; 161(1): 5-9, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535760

RESUMO

BACKGROUND: Public engagement has become one of the most effective tools in gaining feedback and perspectives from members of the public, involving patients with decisions, and inspiring young people to carry the medical profession forwards. Brainbook is a multi-platform, social media-based resource that was created specifically to enhance public engagement in neurosurgery and results from one of its case discussions will be reported in this paper. METHODS: A Brainbook case was created in collaboration with the NIHR Global Health Research Group on Neurotrauma and presented over 3 days (23-25 February 2018). YouTube videos were created depicting the management of an acute subdural haematoma using patient interviews, medical illustration, consultant-led discussion and operative footage. Content was shared across all Brainbook social media platforms and analytics were gathered through social media applications. RESULTS: Over a 72-hour time period, and across multiple social media accounts, 101,418 impressions were achieved (defined as penetrance onto individual media feeds and total views of the content), with active discussion on social media. CONCLUSIONS: Neurosurgical content published across multiple social media outlets represents an encouraging and exciting potential for global engagement across multiple audiences. Social media can be an effective method of not only disseminating neurosurgical knowledge, but activating and engaging the public, allied healthcare professionals, medical students and neurosurgeons.


Assuntos
Participação da Comunidade/métodos , Neurocirurgia , Mídias Sociais , Tomada de Decisões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA