Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R229-R237, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37424401

RESUMO

To investigate the role of glial cells in the regulation of glucoprivic responses in rats, a chemogenetic approach was used to activate astrocytes neighboring catecholamine (CA) neurons in the ventromedial medulla (VLM) where A1 and C1 CA cell groups overlap (A1/C1). Previous results indicate that activation of CA neurons in this region is necessary and sufficient for feeding and corticosterone release in response to glucoprivation. However, it is not known whether astrocyte neighbors of CA neurons contribute to glucoregulatory responses. Hence, we made nanoinjections of AAV5-GFAP-hM3D(Gq)-mCherry to selectively transfect astrocytes in the A1/C1 region with the excitatory designer receptor exclusively activated by designer drugs (DREADDs), hM3D(Gq). After allowing time for DREADD expression, we evaluated the rats for increased food intake and corticosterone release in response to low systemic doses of the antiglycolytic agent, 2-deoxy-d-glucose (2DG), alone and in combination with the hM3D(Gq) activator clozapine-n-oxide (CNO). We found that DREADD-transfected rats ate significantly more food when 2DG and CNO were coadministered than when either 2DG or CNO was injected alone. We also found that CNO significantly enhanced 2DG-induced FOS expression in the A1/C1 CA neurons, and that corticosterone release also was enhanced when CNO and 2DG were administered together. Importantly, CNO-induced activation of astrocytes in the absence of 2DG did not trigger food intake or corticosterone release. Our results indicate that during glucoprivation, activation of VLM astrocytes cells markedly increases the sensitivity or responsiveness of neighboring A1/C1 CA neurons to glucose deficit, suggesting a potentially important role for VLM astrocytes in glucoregulation.


Assuntos
Astrócitos , Corticosterona , Ratos , Animais , Astrócitos/metabolismo , Desoxiglucose/farmacologia , Ratos Sprague-Dawley , Bulbo/metabolismo , Glucose/metabolismo , Catecolaminas/metabolismo
2.
J Biol Chem ; 297(4): 101196, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34529976

RESUMO

Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, which was coupled to loss of ATP-stimulated calcium flux and impaired substrate oxidation stimulated by exogenous calcium. The insights obtained herein suggest that DRP1 regulates substrate oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.


Assuntos
Sinalização do Cálcio , Dinaminas/metabolismo , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Linhagem Celular , Dinaminas/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias Musculares/genética , Oxirredução
3.
J Neurophysiol ; 123(6): 2122-2135, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347148

RESUMO

Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist threo-ß-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca2+ to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O2) or CIH. Results show that EAAT blockade with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca2+ and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH.NEW & NOTEWORTHY Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.


Assuntos
Astrócitos/fisiologia , Células Quimiorreceptoras/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Hipóxia , Transdução de Sinais/fisiologia , Apneia Obstrutiva do Sono , Núcleo Solitário , Animais , Modelos Animais de Doenças , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia
4.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1068-R1077, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320636

RESUMO

Severe trauma can produce a postinjury "metabolic self-destruction" characterized by catabolic metabolism and hyperglycemia. The severity of the hyperglycemia is highly correlated with posttrauma morbidity and mortality. Although no mechanism has been posited to connect severe trauma with a loss of autonomic control over metabolism, traumatic injury causes other failures of autonomic function, notably, gastric stasis and ulceration ("Cushing's ulcer"), which has been connected with the generation of thrombin. Our previous studies established that proteinase-activated receptors (PAR1; "thrombin receptors") located on astrocytes in the autonomically critical nucleus of the solitary tract (NST) can modulate gastric control circuit neurons to cause gastric stasis. Hindbrain astrocytes have also been implicated as important detectors of low glucose or glucose utilization. When activated, these astrocytes communicate with hindbrain catecholamine neurons that, in turn, trigger counterregulatory responses (CRR). There may be a convergence between the effects of thrombin to derange hindbrain gastrointestinal control and the hindbrain circuitry that initiates CRR to increase glycemia in reaction to critical hypoglycemia. Our results suggest that thrombin acts within the NST to increase glycemia through an astrocyte-dependent mechanism. Blockade of purinergic gliotransmission pathways interrupted the effect of thrombin to increase glycemia. Our studies also revealed that thrombin, acting in the NST, produced a rapid, dramatic, and potentially lethal suppression of respiratory rhythm that was also a function of purinergic gliotransmission. These results suggest that the critical connection between traumatic injury and a general collapse of autonomic regulation involves thrombin action on astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Glicemia , Neurônios/efeitos dos fármacos , Rombencéfalo/efeitos dos fármacos , Trombina/farmacologia , Animais , Masculino , Nervo Frênico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Taxa Respiratória/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R545-R564, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967862

RESUMO

Astrocytic excitatory amino acid transporters (EAATs) are critical to restraining synaptic and neuronal activity in the nucleus tractus solitarii (nTS). Relief of nTS EAAT restraint generates two opposing effects, an increase in neuronal excitability that reduces blood pressure and breathing and an attenuation in afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. Although the former is due, in part, to activation of ionotropic glutamate receptors, there remains a substantial contribution from another unidentified glutamate receptor. In addition, the mechanism(s) by which EAAT inhibition reduced TS-EPSC amplitude is unknown. Metabotropic glutamate receptors (mGluRs) differentially modulate nTS excitability. Activation of group I mGluRs on nTS neuron somas leads to depolarization, whereas group II/III mGluRs on sensory afferents decrease TS-EPSC amplitude. Thus we hypothesize that EAATs control postsynaptic excitability and TS-EPSC amplitude via restraint of mGluR activation. To test this hypothesis, we used in vivo recording, brain slice electrophysiology, and imaging of glutamate release and TS-afferent Ca2+. Results show that EAAT blockade in the nTS with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) induced group I mGluR-mediated depressor, bradycardic, and apneic responses that were accompanied by neuronal depolarization, elevated discharge, and increased spontaneous synaptic activity. Conversely, upon TS stimulation TFB-TBOA elevated extracellular glutamate to decrease presynaptic Ca2+ and TS-EPSC amplitude via activation of group II/III mGluRs. Together, these data suggest an important role of EAATs in restraining mGluR activation and overall cardiorespiratory function.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/efeitos dos fármacos , Ácido Aspártico/análogos & derivados , Astrócitos/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Núcleo Solitário/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R38-R48, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596114

RESUMO

Astrocytes generate robust cytoplasmic calcium signals in response to reductions in extracellular glucose. This calcium signal, in turn, drives purinergic gliotransmission, which controls the activity of catecholaminergic (CA) neurons in the hindbrain. These CA neurons are critical to triggering glucose counter-regulatory responses (CRRs) that, ultimately, restore glucose homeostasis via endocrine and behavioral means. Although the astrocyte low-glucose sensor involvement in CRR has been accepted, it is not clear how astrocytes produce an increase in intracellular calcium in response to a decrease in glucose. Our ex vivo calcium imaging studies of hindbrain astrocytes show that the glucose type 2 transporter (GLUT2) is an essential feature of the astrocyte glucosensor mechanism. Coimmunoprecipitation assays reveal that the recombinant GLUT2 binds directly with the recombinant Gq protein subunit that activates phospholipase C (PLC). Additional calcium imaging studies suggest that GLUT2 may be connected to a PLC-endoplasmic reticular-calcium release mechanism, which is amplified by calcium-induced calcium release (CICR). Collectively, these data help outline a potential mechanism used by astrocytes to convert information regarding low-glucose levels into intracellular changes that ultimately regulate the CRR.


Assuntos
Astrócitos/fisiologia , Cálcio/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Rombencéfalo/citologia , Fosfolipases Tipo C/metabolismo , Anilidas/farmacologia , Animais , Antioxidantes/farmacologia , Compostos de Boro/farmacologia , Cálcio/farmacologia , Dantroleno/farmacologia , Estrenos/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Florizina/farmacologia , Pró-Fármacos , Pirrolidinonas/farmacologia , Quercetina/farmacologia , Ratos , Ratos Long-Evans , Fosfolipases Tipo C/antagonistas & inibidores
7.
Brain ; 142(11): 3382-3397, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637422

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.


Assuntos
Fosfatidiletanolaminas/biossíntese , RNA Nucleotidiltransferases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Alelos , Animais , Atrofia , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Técnicas de Inativação de Genes , Variação Genética , Humanos , Lipidômica , Masculino , Camundongos , RNA Nucleotidiltransferases/deficiência , Adulto Jovem , Peixe-Zebra
8.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R153-R164, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590557

RESUMO

Hindbrain catecholaminergic (CA) neurons are required for critical autonomic, endocrine, and behavioral counterregulatory responses (CRRs) to hypoglycemia. Recent studies suggest that CRR initiation depends on hindbrain astrocyte glucose sensors (McDougal DH, Hermann GE, Rogers RC. Front Neurosci 7: 249, 2013; Rogers RC, Ritter S, Hermann GE. Am J Physiol Regul Integr Comp Physiol 310: R1102-R1108, 2016). To test the proposition that hindbrain CA responses to glucoprivation are astrocyte dependent, we utilized transgenic mice in which the calcium reporter construct (GCaMP5) was expressed selectively in tyrosine hydroxylase neurons (TH-GCaMP5). We conducted live cell calcium-imaging studies on tissue slices containing the nucleus of the solitary tract (NST) or the ventrolateral medulla, critical CRR initiation sites. Results show that TH-GCaMP5 neurons are robustly activated by a glucoprivic challenge and that this response is dependent on functional astrocytes. Pretreatment of hindbrain slices with fluorocitrate (an astrocytic metabolic suppressor) abolished TH-GCaMP5 neuronal responses to glucoprivation, but not to glutamate. Pharmacologic results suggest that the astrocytic connection with hindbrain CA neurons is purinergic via P2 receptors. Parallel imaging studies on hindbrain slices of NST from wild-type C57BL/6J mice, in which astrocytes and neurons were prelabeled with a calcium reporter dye and an astrocytic vital dye, show that both cell types are activated by glucoprivation but astrocytes responded significantly sooner than neurons. Pretreatment of these hindbrain slices with P2 antagonists abolished neuronal responses to glucoprivation without interruption of astrocyte responses; pretreatment with fluorocitrate eliminated both astrocytic and neuronal responses. These results support earlier work suggesting that the primary detection of glucoprivic signals by the hindbrain is mediated by astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Catecolaminas/metabolismo , Glucose/deficiência , Neurônios/metabolismo , Rombencéfalo/metabolismo , Animais , Feminino , Genes Reporter , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Receptores Purinérgicos P2/metabolismo , Rombencéfalo/citologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Semin Immunol ; 26(5): 402-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24486057

RESUMO

The sympathetic nervous system (SNS) is part of an integrative network that functions to restore homeostasis following injury and infection. The SNS can provide negative feedback control over inflammation through the secretion of catecholamines from postganglionic sympathetic neurons and adrenal chromaffin cells (ACCs). Central autonomic structures receive information regarding the inflammatory status of the body and reflexively modulate SNS activity. However, inflammation and infection can also directly regulate SNS function by peripheral actions on postganglionic cells. The present review discusses how inflammation activates autonomic reflex pathways and compares the effect of localized and systemic inflammation on ACCs and postganglionic sympathetic neurons. Systemic inflammation significantly enhanced catecholamine secretion through an increase in Ca(2+) release from the endoplasmic reticulum. In contrast, acute and chronic GI inflammation reduced voltage-gated Ca(2+) current. Thus it appears that the mechanisms underlying the effects of peripheral and systemic inflammation neuroendocrine function converge on the modulation of intracellular Ca(2+) signaling.


Assuntos
Cálcio/metabolismo , Catecolaminas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Neurônios/metabolismo , Sepse/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Cálcio/imunologia , Sinalização do Cálcio , Catecolaminas/imunologia , Células Cromafins/imunologia , Células Cromafins/metabolismo , Células Cromafins/patologia , Citocinas/genética , Citocinas/imunologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Neurônios/imunologia , Neurônios/patologia , Sepse/genética , Sepse/imunologia , Sepse/patologia , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/patologia
10.
J Neurosci ; 36(12): 3531-40, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013681

RESUMO

Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9-39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9-39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. SIGNIFICANCE STATEMENT: Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS are relevant for energy balance control by GLP-1 signaling. Here, we report that GLP-1R agonists activate and internalize within NTS astrocytes, while behavioral data suggest the pharmacological relevance of NTS astrocytic GLP-1R activation for food intake and body weight. These findings support a previously unknown role for CNS astrocytes in energy balance control by GLP-1 signaling.


Assuntos
Regulação do Apetite/fisiologia , Astrócitos/fisiologia , Comportamento Alimentar/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Homeostase/fisiologia , Bulbo/metabolismo , Animais , Metabolismo Energético/fisiologia , Retroalimentação Fisiológica/fisiologia , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA