Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Arch Toxicol ; 97(3): 849-863, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653537

RESUMO

Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.


Assuntos
Disruptores Endócrinos , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Gravidez , Camundongos , Feminino , Ratos , Animais , Dietilestilbestrol/toxicidade , Ovário , Disruptores Endócrinos/toxicidade , Cetoconazol , Reprodução , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia
2.
FASEB J ; 35(7): e21718, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105801

RESUMO

Acetaminophen, aspirin, and ibuprofen are mild analgesics commonly used by pregnant women, the sole current recommendation being to avoid ibuprofen from the fifth month of gestation. The nephrotoxicity of these three analgesics is well documented in adults, as is their interference with prostaglandins biosynthesis. Here we investigated the effect of these analgesics on human first trimester kidneys ex vivo. We first evaluated prostaglandins biosynthesis functionality by performing a wide screening of prostaglandin expression patterns in first trimester human kidneys. We demonstrated that prostaglandins biosynthesis machinery is functional during early nephrogenesis. Human fetal kidney explants aged 7-12 developmental weeks were exposed ex vivo to ibuprofen, aspirin or acetaminophen for 7 days, and analyzed by histology, immunohistochemistry, and flow cytometry. This study has revealed that these analgesics induced a spectrum of abnormalities within early developing structures, ranging from cell death to a decline in differentiating glomeruli density. These results warrant caution for the use of these medicines during the first trimester of pregnancy.


Assuntos
Analgésicos/efeitos adversos , Feto/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Feminino , Feto/metabolismo , Humanos , Glomérulos Renais/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/efeitos dos fármacos , Prostaglandinas/metabolismo
3.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999017

RESUMO

Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses.IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.


Assuntos
Células Germinativas/virologia , Infecções por HIV/virologia , HIV-1/genética , Testículo/virologia , Animais , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta , Macrófagos/virologia , Masculino , Neoplasias da Próstata , Seminoma , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Espermatogônias , Internalização do Vírus , Replicação Viral
4.
Bioinformatics ; 35(17): 3133-3139, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668675

RESUMO

MOTIVATION: Recent advances in transcriptomics have enabled unprecedented insight into gene expression analysis at a single-cell resolution. While it is anticipated that the number of publications based on such technologies will increase in the next decade, there is currently no public resource to centralize and enable scientists to explore single-cell datasets published in the field of reproductive biology. RESULTS: Here, we present a major update of the ReproGenomics Viewer, a cross-species and cross-technology web-based resource of manually-curated sequencing datasets related to reproduction. The redesign of the ReproGenomics Viewer's architecture is accompanied by significant growth of the database content including several landmark single-cell RNA-sequencing datasets. The implementation of additional tools enables users to visualize and browse the complex, high-dimensional data now being generated in the reproductive field. AVAILABILITY AND IMPLEMENTATION: The ReproGenomics Viewer resource is freely accessible at http://rgv.genouest.org. The website is implemented in Python, JavaScript and MongoDB, and is compatible with all major browsers. Source codes can be downloaded from https://github.com/fchalmel/RGV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Biologia Computacional , Bases de Dados Factuais , Genômica , Análise de Sequência de RNA
5.
Hum Reprod ; 35(5): 1099-1119, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412604

RESUMO

STUDY QUESTION: Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER: The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY: Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION: To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS: First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE: This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA: Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION: The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS: For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.


Assuntos
Diferenciação Sexual , Testículo , Feminino , Feto , Gônadas , Humanos , Masculino , Ovário , Gravidez , Diferenciação Sexual/genética
6.
Bioinformatics ; 34(12): 2116-2122, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29385404

RESUMO

Motivation: At the same time that toxicologists express increasing concern about reproducibility in this field, the development of dedicated databases has already smoothed the path toward improving the storage and exchange of raw toxicogenomic data. Nevertheless, none provides access to analyzed and interpreted data as originally reported in scientific publications. Given the increasing demand for access to this information, we developed TOXsIgN, a repository for TOXicogenomic sIgNatures. Results: The TOXsIgN repository provides a flexible environment that facilitates online submission, storage and retrieval of toxicogenomic signatures by the scientific community. It currently hosts 754 projects that describe more than 450 distinct chemicals and their 8491 associated signatures. It also provides users with a working environment containing a powerful search engine as well as bioinformatics/biostatistics modules that enable signature comparisons or enrichment analyses. Availability and implementation: The TOXsIgN repository is freely accessible at http://toxsign.genouest.org. Website implemented in Python, JavaScript and MongoDB, with all major browsers supported. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados Factuais , Software , Toxicogenética/métodos , Animais , Humanos
7.
Nucleic Acids Res ; 43(W1): W109-16, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883147

RESUMO

We report the development of the ReproGenomics Viewer (RGV), a multi- and cross-species working environment for the visualization, mining and comparison of published omics data sets for the reproductive science community. The system currently embeds 15 published data sets related to gametogenesis from nine model organisms. Data sets have been curated and conveniently organized into broad categories including biological topics, technologies, species and publications. RGV's modular design for both organisms and genomic tools enables users to upload and compare their data with that from the data sets embedded in the system in a cross-species manner. The RGV is freely available at http://rgv.genouest.org.


Assuntos
Gametogênese/genética , Software , Animais , Mineração de Dados , Feminino , Genômica , Humanos , Internet , Masculino , Camundongos , Ratos , Espermatogênese/genética
8.
Development ; 139(22): 4123-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23034635

RESUMO

Germ cells, the embryonic precursors of sperm or oocytes, respond to molecular cues that regulate their sex-specific development in the fetal gonads. In males in particular, the balance between continued proliferation and cell fate commitment is crucial: defects in proliferation result in insufficient spermatogonial stem cells for fertility, but escape from commitment and prolonged pluripotency can cause testicular germ cell tumors. However, the factors that regulate this balance remain unidentified. Here, we show that signaling by the TGFß morphogen Nodal and its co-receptor Cripto is active during a crucial window of male germ cell development. The Nodal pathway is triggered when somatic signals, including FGF9, induce testicular germ cells to upregulate Cripto. Germ cells of mutant mice with compromised Nodal signaling showed premature differentiation, reduced pluripotency marker expression and a reduced ability to form embryonic germ (EG) cell colonies in vitro. Conversely, human testicular tumors showed upregulation of NODAL and CRIPTO that was proportional to invasiveness and to the number of malignant cells. Thus, Nodal signaling provides a molecular control mechanism that regulates male germ cell potency in normal development and testicular cancer.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Células Germinativas/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Testículo/embriologia , Animais , Diferenciação Celular , Proliferação de Células , Fator 9 de Crescimento de Fibroblastos/metabolismo , Células Germinativas/citologia , Humanos , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Espermatogônias/citologia , Neoplasias Testiculares/metabolismo , Fator de Crescimento Transformador beta
9.
Reproduction ; 150(5): R149-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26416010

RESUMO

Spermatogenesis is a complex and tightly regulated process leading to the continuous production of male gametes, the spermatozoa. This developmental process requires the sequential and coordinated expression of thousands of genes, including many that are testis-specific. The molecular networks underlying normal and pathological spermatogenesis have been widely investigated in recent decades, and many high-throughput expression studies have studied genes and proteins involved in male fertility. In this review, we focus on studies that have attempted to correlate transcription and translation during spermatogenesis by comparing the testicular transcriptome and proteome. We also discuss the recent development and use of new transcriptomic approaches that provide a better proxy for the proteome, from both qualitative and quantitative perspectives. Finally, we provide illustrations of how testis-derived transcriptomic and proteomic data can be integrated to address new questions and how the 'proteomics informed by transcriptomics' technique, by combining RNA-seq and MS-based proteomics, can contribute significantly to the discovery of new protein-coding genes or new protein isoforms expressed during spermatogenesis.


Assuntos
Regulação da Expressão Gênica , Proteoma/análise , Proteômica/métodos , Espermatogênese/fisiologia , Transcriptoma , Animais , Humanos , Masculino
10.
Biol Reprod ; 91(5): 123, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210130

RESUMO

Spermatogenesis is a complex process, dependent upon the successive activation and/or repression of thousands of gene products, and ends with the production of haploid male gametes. RNA sequencing of male germ cells in the rat identified thousands of novel testicular unannotated transcripts (TUTs). Although such RNAs are usually annotated as long noncoding RNAs (lncRNAs), it is possible that some of these TUTs code for protein. To test this possibility, we used a "proteomics informed by transcriptomics" (PIT) strategy combining RNA sequencing data with shotgun proteomics analyses of spermatocytes and spermatids in the rat. Among 3559 TUTs and 506 lncRNAs found in meiotic and postmeiotic germ cells, 44 encoded at least one peptide. We showed that these novel high-confidence protein-coding loci exhibit several genomic features intermediate between those of lncRNAs and mRNAs. We experimentally validated the testicular expression pattern of two of these novel protein-coding gene candidates, both highly conserved in mammals: one for a vesicle-associated membrane protein we named VAMP-9, and the other for an enolase domain-containing protein. This study confirms the potential of PIT approaches for the discovery of protein-coding transcripts initially thought to be untranslated or unknown transcripts. Our results contribute to the understanding of spermatogenesis by characterizing two novel proteins, implicated by their strong expression in germ cells. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD000872.


Assuntos
Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética/métodos , Loci Gênicos , Fases de Leitura Aberta , Proteômica/métodos , Espermatogônias/metabolismo , Animais , Células Cultivadas , Biologia Computacional , Genes Controladores do Desenvolvimento , Masculino , Fases de Leitura Aberta/genética , Ratos , Ratos Sprague-Dawley , Transcriptoma
11.
Biol Reprod ; 91(1): 5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740603

RESUMO

Mammalian spermatogenesis is a complex and highly orchestrated combination of processes in which male germline proliferation and differentiation result in the production of mature spermatozoa. If recent genome-wide studies have contributed to the in-depth analysis of the male germline protein-encoding transcriptome, little effort has yet been devoted to the systematic identification of novel unannotated transcribed regions expressed during mammalian spermatogenesis. We report high-resolution expression profiling of male germ cells in rat, using next-generation sequencing technology and highly enriched testicular cell populations. Among 20 424 high-confidence transcripts reconstructed, we defined a stringent set of 1419 long multi-exonic unannotated transcripts expressed in the testis (testis-expressed unannotated transcripts [TUTs]). TUTs were divided into 7 groups with different expression patterns. Most TUTs share many of the characteristics of vertebrate long noncoding RNAs (lncRNAs). We also markedly reinforced the finding that TUTs and known lncRNAs accumulate during the meiotic and postmeiotic stages of spermatogenesis in mammals and that X-linked meiotic TUTs do not escape the silencing effects of meiotic sex chromosome inactivation. Importantly, we discovered that TUTs and known lncRNAs with a peak expression during meiosis define a distinct class of noncoding transcripts that exhibit exons twice as long as those of other transcripts. Our study provides new insights in transcriptional profiling of the male germline and represents a high-quality resource for novel loci expressed during spermatogenesis that significantly contributes to rat genome annotation.


Assuntos
Perfilação da Expressão Gênica/métodos , Espermatogênese/genética , Espermatozoides/citologia , Testículo/citologia , Animais , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Espermatozoides/metabolismo , Testículo/metabolismo , Transcrição Gênica
12.
Mol Cell Proteomics ; 10(4): M900587MCP200, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20467044

RESUMO

Sertoli cells (SCs) are the central, essential coordinators of spermatogenesis, without which germ cell development cannot occur. We previously showed that Dicer, an RNaseIII endonuclease required for microRNA (miRNA) biogenesis, is absolutely essential for Sertoli cells to mature, survive, and ultimately sustain germ cell development. Here, using isotope-coded protein labeling, a technique for protein relative quantification by mass spectrometry, we investigated the impact of Sertoli cell-Dicer and subsequent miRNA loss on the testicular proteome. We found that, a large proportion of proteins (50 out of 130) are up-regulated by more that 1.3-fold in testes lacking Sertoli cell-Dicer, yet that this protein up-regulation is mild, never exceeding a 2-fold change, and is not preceeded by alterations of the corresponding mRNAs. Of note, the expression levels of six proteins of interest were further validated using the Absolute Quantification (AQUA) peptide technology. Furthermore, through 3'UTR luciferase assays we identified one up-regulated protein, SOD-1, a Cu/Zn superoxide dismutase whose overexpression has been linked to enhanced cell death through apoptosis, as a likely direct target of three Sertoli cell-expressed miRNAs, miR-125a-3p, miR-872 and miR-24. Altogether, our study, which is one of the few in vivo analyses of miRNA effects on protein output, suggests that, at least in our system, miRNAs play a significant role in translation control.


Assuntos
Proteoma/metabolismo , Ribonuclease III/deficiência , Células de Sertoli/metabolismo , Testículo/metabolismo , Regiões 3' não Traduzidas , Animais , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Ribonuclease III/genética , Deleção de Sequência , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Espectrometria de Massas em Tandem , Testículo/patologia , Transcrição Gênica , Regulação para Cima
13.
Eur Urol ; 83(5): 441-451, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801089

RESUMO

BACKGROUND: Intratumor heterogeneity (ITH) is a key feature in clear cell renal cell carcinomas (ccRCCs) that impacts outcomes such as aggressiveness, response to treatments, or recurrence. In particular, it may explain tumor relapse after surgery in clinically low-risk patients who did not benefit from adjuvant therapy. Recently, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to unravel expression ITH (eITH) and might enable better assessment of clinical outcomes in ccRCC. OBJECTIVE: To explore eITH in ccRCC with a focus on malignant cells (MCs) and assess its relevance to improve prognosis for low-risk patients. DESIGN, SETTING, AND PARTICIPANTS: We performed scRNA-seq on tumor samples from five untreated ccRCC patients ranging from pT1a to pT3b. Data were complemented with a published dataset composed of pairs of matched normal and ccRCC samples. INTERVENTION: Radical or partial nephrectomy on untreated ccRCC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Viability and cell type proportions were determined by flow cytometry. Following scRNA-seq, a functional analysis was performed and tumor progression trajectories were inferred. A deconvolution approach was applied on an external cohort, and Kaplan-Meier survival curves were estimated with respect to the prevalence of malignant clusters. RESULTS AND LIMITATIONS: We analyzed 54 812 cells and identified 35 cell subpopulations. The eITH analysis revealed that each tumor contained various degrees of clonal diversity. The transcriptomic signatures of MCs in one particularly heterogeneous sample were used to design a deconvolution-based strategy that allowed the risk stratification of 310 low-risk ccRCC patients. CONCLUSIONS: We described eITH in ccRCCs, and used this information to establish significant cell population-based prognostic signatures and better discriminate ccRCC patients. This approach has the potential to improve the stratification of clinically low-risk patients and their therapeutic management. PATIENT SUMMARY: We sequenced the RNA content of individual cell subpopulations composed of clear cell renal cell carcinomas and identified specific malignant cells the genetic information of which can be used to predict tumor progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Prognóstico , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
14.
Bioinform Adv ; 2(1): vbac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699406

RESUMO

Motivation: Dot plots are heatmap-like charts that provide a compact way to simultaneously display two quantitative information by means of dots of different sizes and colors. Despite the popularity of this visualization method, particularly in single-cell RNA-sequencing (scRNA-seq) studies, existing tools used to make dot plots are limited in terms of functionality and usability. Results: We developed FlexDotPlot, an R package for generating dot plots from multifaceted data, including scRNA-seq data. It provides a universal and easy-to-use solution with a high versatility. An interactive R Shiny application is also available allowing non-R users to easily generate dot plots with several tunable parameters. Availability and implementation: Source code and detailed manual are available on CRAN (stable version) and at https://github.com/Simon-Leonard/FlexDotPlot (development version). Code to reproduce figures is available at https://github.com/Simon-Leonard/FlexDotPlot_paper. A Shiny app is available as a stand-alone application within the package. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

15.
J Clin Endocrinol Metab ; 107(6): 1647-1661, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35147701

RESUMO

CONTEXT: Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring. Human studies have also suggested harmful APAP exposure effects. OBJECTIVE: Given that disruption of fetal ovarian development may impact women's reproductive health, we investigated the effects of APAP on fetal human ovaries in culture. DESIGN AND SETTING: Human ovarian fragments from 284 fetuses aged 7 to 12 developmental weeks (DW) were cultivated ex vivo for 7 days in the presence of human-relevant concentrations of APAP (10-8 to 10-3 M) or vehicle control. MAIN OUTCOME MEASURES: Outcomes included examination of postculture tissue morphology, cell viability, apoptosis, and quantification of hormones, APAP, and APAP metabolites in conditioned culture media. RESULTS: APAP reduced the total cell number specifically in 10- to 12-DW ovaries, induced cell death, and decreased KI67-positive cell density independently of fetal age. APAP targeted subpopulations of germ cells and disrupted human fetal ovarian steroidogenesis, without affecting prostaglandin or inhibin B production. Human fetal ovaries were able to metabolize APAP. CONCLUSIONS: Our data indicate that APAP can impact first trimester human fetal ovarian development, especially during a 10- to 12-DW window of heightened sensitivity. Overall, APAP behaves as an endocrine disruptor in the fetal human ovary.


Assuntos
Disruptores Endócrinos , Ovário , Acetaminofen/toxicidade , Feminino , Feto , Humanos , Masculino , Gravidez , Primeiro Trimestre da Gravidez
16.
Biol Reprod ; 84(4): 790-800, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21148109

RESUMO

The commitment of germ cells to either oogenesis or spermatogenesis occurs during fetal gonad development: germ cells enter meiosis or mitotic arrest, depending on whether they reside within an ovary or a testis, respectively. Despite the critical importance of this step for sexual reproduction, gene networks underlying germ cell development have remained only partially understood. Taking advantage of the W(v) mouse model, in which gonads lack germ cells, we conducted a microarray study to identify genes expressed in fetal germ cells. In addition to distinguishing genes expressed by germ cells from those expressed by somatic cells within the developing gonads, we were able to highlight specific groups of genes expressed only in female or male germ cells. Our results provide an important resource for deciphering the molecular pathways driving proper germ cell development and sex determination and will improve our understanding of the etiology of human germ cell tumors that arise from dysregulation of germ cell differentiation.


Assuntos
Desenvolvimento Fetal/genética , Redes Reguladoras de Genes , Células Germinativas/citologia , Células Germinativas/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Hibridização In Situ , Masculino , Meiose/genética , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Oogênese/genética , Gravidez , Proteínas Proto-Oncogênicas c-kit/genética , Espermatogênese/genética
17.
Cells ; 10(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207717

RESUMO

Timely and efficient elimination of apoptotic substrates, continuously produced during one's lifespan, is a vital need for all tissues of the body. This task is achieved by cells endowed with phagocytic activity. In blood-separated tissues such as the retina, the testis and the ovaries, the resident cells of epithelial origin as retinal pigmented epithelial cells (RPE), testis Sertoli cells and ovarian granulosa cells (GC) provide phagocytic cleaning of apoptotic cells and cell membranes. Disruption of this process leads to functional ablation as blindness in the retina and compromised fertility in males and females. To ensure the efficient elimination of apoptotic substrates, RPE, Sertoli cells and GC combine various mechanisms allowing maintenance of tissue homeostasis and avoiding acute inflammation, tissue disorganization and functional ablation. In tight cooperation with other phagocytosis receptors, MERTK-a member of the TAM family of receptor tyrosine kinases (RTK)-plays a pivotal role in apoptotic substrate cleaning from the retina, the testis and the ovaries through unconventional autophagy-assisted phagocytosis process LAP (LC3-associated phagocytosis). In this review, we focus on the interplay between TAM RTKs, autophagy-related proteins, LAP, and Toll-like receptors (TLR), as well as the regulatory mechanisms allowing these components to sustain tissue homeostasis and prevent functional ablation of the retina, the testis and the ovaries.


Assuntos
Células da Granulosa , Retina , Células de Sertoli , c-Mer Tirosina Quinase/metabolismo , Animais , Autofagia , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Masculino , Fagocitose , Retina/citologia , Retina/metabolismo , Retina/patologia , Células de Sertoli/citologia , Células de Sertoli/metabolismo
18.
Int J Genomics ; 2021: 9028667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368340

RESUMO

Gene dosage is an important issue both in cell and evolutionary biology. Most genes are present in two copies or alleles in diploid eukariotic cells. The most outstanding exception is monoallelic gene expression (MA) that concerns genes localized on the X chromosome or in regions undergoing parental imprinting in eutherians, and many other genes scattered throughout the genome. In diploids, haploinsufficiency (HI) implies that a single functional copy of a gene in a diploid organism is insufficient to ensure a normal biological function. One of the most important mechanisms ensuring functional innovation during evolution is whole genome duplication (WGD). In addition to the two WGDs that have occurred in vertebrate genomes, the teleost genomes underwent an additional WGD, after their divergence from tetrapods. In the present work, we have studied on 57 teleost species whether the orthologs of human MA or HI genes remain more frequently in duplicates or returned more frequently in singleton than the rest of the genome. Our results show that the teleost orthologs of HI human genes remained more frequently in duplicate than the rest of the genome in all of the teleost species studied. No signal was observed for the orthologs of genes mapping to the human X chromosome or subjected to parental imprinting. Surprisingly, the teleost orthologs of the other human MA genes remained in duplicate more frequently than the rest of the genome for most teleost species. These results suggest that the teleost orthologs of MA and HI human genes also undergo selective pressures either related to absolute protein amounts and/or of dosage balance issues. However, these constraints seem to be different for MA genes in teleost in comparison with human genomes.

19.
Front Genet ; 11: 627007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633774

RESUMO

Ubiquitin-specific peptidase 18 (USP18) acts as gatekeeper of type I interferon (IFN) responses by binding to the IFN receptor subunit IFNAR2 and preventing activation of the downstream JAK/STAT pathway. In any given cell type, the level of USP18 is a key determinant of the output of IFN-stimulated transcripts. How the baseline level of USP18 is finely tuned in different cell types remains ill defined. Here, we identified microRNAs (miRNAs) that efficiently target USP18 through binding to the 3'untranslated region (3'UTR). Among these, three miRNAs are particularly enriched in circulating monocytes which exhibit low baseline USP18. Intriguingly, the USP18 3'UTR sequence is duplicated in human and chimpanzee genomes. In humans, four USP18 3'UTR copies were previously found to be embedded in long intergenic non-coding (linc) RNA genes residing in chr22q11.21 and known as FAM247A-D. Here, we further characterized their sequence and measured their expression profile in human tissues. Importantly, we describe an additional lincRNA bearing USP18 3'UTR (here linc-UR-B1) that is expressed only in testis. RNA-seq data analyses from testicular cell subsets revealed a positive correlation between linc-UR-B1 and USP18 expression in spermatocytes and spermatids. Overall, our findings uncover a set of miRNAs and lincRNAs, which may be part of a network evolved to fine-tune baseline USP18, particularly in cell types where IFN responsiveness needs to be tightly controlled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA