Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(9): 1275-1283, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736177

RESUMO

The continuing prevalence of drug-resistant tuberculosis threatens global TB control programs, highlighting the need to discover new drug candidates to feed the drug development pipeline. In this study, we describe a high-throughput screening hit (4-benzylpiperidin-1-yl)(1-(5-phenyl-1,3,4-oxadiazol-2-yl)piperidin-4-yl)methanone (P1) as a potent antitubercular agent. Structure-activity guided synthesis led to the discovery of several analogs with high in vitro potency. P1 was found to have promising potency against many drug-resistant strains, as well as drug-susceptible clinical isolates. It also showed cidality against Mtb growing in host macrophages. Whole genome sequencing of genomic DNA from resistant mutants raised to P1 revealed mutations in decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1). This novel oxadiazole scaffold expands the set of chemical tools for targeting a well-validated pathway to treat tuberculosis.

2.
ACS Infect Dis ; 7(2): 479-492, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33405882

RESUMO

Pyrazolo[1,5-a]pyrimidin-7(4H)-one was identified through high-throughput whole-cell screening as a potential antituberculosis lead. The core of this scaffold has been identified several times previously and has been associated with various modes of action against Mycobacterium tuberculosis (Mtb). We explored this scaffold through the synthesis of a focused library of analogues and identified key features of the pharmacophore while achieving substantial improvements in antitubercular activity. Our best hits had low cytotoxicity and showed promising activity against Mtb within macrophages. The mechanism of action of these compounds was not related to cell-wall biosynthesis, isoprene biosynthesis, or iron uptake as has been found for other compounds sharing this core structure. Resistance to these compounds was conferred by mutation of a flavin adenine dinucleotide (FAD)-dependent hydroxylase (Rv1751) that promoted compound catabolism by hydroxylation from molecular oxygen. Our results highlight the risks of chemical clustering without establishing mechanistic similarity of chemically related growth inhibitors.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA