Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(35): 24263-74, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25002576

RESUMO

Acetyl-CoA plays a fundamental role in cell signaling and metabolic pathways, with its cellular levels tightly controlled through reciprocal regulation of enzymes that mediate its synthesis and catabolism. ACOT12, the primary acetyl-CoA thioesterase in the liver of human, mouse, and rat, is responsible for cleavage of the thioester bond within acetyl-CoA, producing acetate and coenzyme A for a range of cellular processes. The enzyme is regulated by ADP and ATP, which is believed to be mediated through the ligand-induced oligomerization of the thioesterase domains, whereby ATP induces active dimers and tetramers, whereas apo- and ADP-bound ACOT12 are monomeric and inactive. Here, using a range of structural and biophysical techniques, it is demonstrated that ACOT12 is a trimer rather than a tetramer and that neither ADP nor ATP exert their regulatory effects by altering the oligomeric status of the enzyme. Rather, the binding site and mechanism of ADP regulation have been determined to occur through two novel regulatory regions, one involving a large loop that links the thioesterase domains (Phe(154)-Thr(178)), defined here as RegLoop1, and a second region involving the C terminus of thioesterase domain 2 (Gln(304)-Gly(326)), designated RegLoop2. Mutagenesis confirmed that Arg(312) and Arg(313) are crucial for this mode of regulation, and novel interactions with the START domain are presented together with insights into domain swapping within eukaryotic thioesterases for substrate recognition. In summary, these experiments provide the first structural insights into the regulation of this enzyme family, revealing an alternate hypothesis likely to be conserved throughout evolution.


Assuntos
Lipídeos/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Tioléster Hidrolases/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Tioléster Hidrolases/química
2.
ACS Infect Dis ; 10(6): 2047-2062, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38811007

RESUMO

Dengue virus (DENV) nonstructural protein 5 (NS5), consisting of methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, is critical for viral RNA synthesis within endoplasmic reticulum-derived replication complexes in the cytoplasm. However, a significant proportion of NS5 is localized to the nucleus of infected cells for DENV2, 3, and 4, whereas DENV1 NS5 is localized diffusely in the cytoplasm. We still have an incomplete understanding of how the DENV NS5 subcellular localization is regulated. Within NS5, two putative nuclear localization signal (NLS) sequences have been identified: NLSCentral residing in the palm of the RdRp domain as well as the recently discovered NLSC-term residing in the flexible region at the C-terminal of the RdRp domain. We have previously shown that DENV2 NS5 nuclear localization can be significantly reduced by single-point mutations to the NLSC-term. Here, we present biochemical, virological, and structural data demonstrating that the relative importance of either NLS in NS5 nuclear localization is unique to each of the four DENV serotypes. DENV1 NS5's cytoplasmic localization appears to be due to a functionally weak interaction between its NLSCentral and importin-α (IMPα), while DENV2 NS5 is almost exclusively nuclear through its NLSC-term's strong interaction with IMPα. Both NLSs of DENV3 NS5 appear to contribute to directing its nuclear localization. Lastly, in the case of DENV4, the regulation of its NS5 nuclear localization remains an enigma but appears to be associated with its NLSC-term.


Assuntos
Núcleo Celular , Vírus da Dengue , Sinais de Localização Nuclear , Sorogrupo , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Núcleo Celular/metabolismo , Humanos , Citoplasma/metabolismo , Replicação Viral , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , Animais , Dengue/virologia , Transporte Proteico
3.
Nat Commun ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397924

RESUMO

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/metabolismo , Sinais de Localização Nuclear/metabolismo , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/genética , Relação Estrutura-Atividade
4.
Artigo em Inglês | MEDLINE | ID: mdl-19478448

RESUMO

The transport of macromolecules across the nuclear envelope is an essential eukaryotic process that enables proteins such as transcription factors, polymerases and histones to gain access to the genetic material contained within the nucleus. Importin-beta plays a central role in the nucleocytoplasmic transport process, mediating nuclear import through a range of interactions with cytoplasmic, nuclear and nuclear pore proteins such as importin-alpha, Ran, nucleoporins and various cargo molecules. The unliganded form of the full-length yeast importin-beta has been expressed and crystallized. The crystals were obtained by vapour diffusion at pH 6.5 and 290 K. The crystals belonged to space group P2(1) (unit-cell parameters a = 58.17, b = 127.25, c = 68.52 A, beta = 102.23). One molecule is expected in the asymmetric unit. The crystals diffracted to 2.4 A resolution using a laboratory X-ray source and were suitable for crystal structure determination.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Cristalização , Coleta de Dados , Escherichia coli/genética , Glutationa Transferase/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Tamanho da Partícula , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento a Baixo Ângulo , Solubilidade , Estatística como Assunto , Temperatura , Transformação Bacteriana , Difração de Raios X , beta Carioferinas/química , beta Carioferinas/isolamento & purificação
5.
Cells ; 8(3)2019 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909636

RESUMO

Dengue virus (DENV) threatens almost 70% of the world's population, with no effective vaccine or therapeutic currently available. A key contributor to infection is nuclear localisation in the infected cell of DENV nonstructural protein 5 (NS5) through the action of the host importin (IMP) α/ß1 proteins. Here, we used a range of microscopic, virological and biochemical/biophysical approaches to show for the first time that the small molecule GW5074 has anti-DENV action through its novel ability to inhibit NS5⁻IMPα/ß1 interaction in vitro as well as NS5 nuclear localisation in infected cells. Strikingly, GW5074 not only inhibits IMPα binding to IMPß1, but can dissociate preformed IMPα/ß1 heterodimer, through targeting the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity, as shown using analytical ultracentrifugation, thermostability analysis and circular dichroism measurements. Importantly, GW5074 has strong antiviral activity at low µM concentrations against not only DENV-2, but also zika virus and West Nile virus. This work highlights DENV NS5 nuclear targeting as a viable target for anti-flaviviral therapeutics.


Assuntos
Antivirais/farmacologia , Núcleo Celular/metabolismo , Flavivirus/efeitos dos fármacos , Multimerização Proteica , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Fenóis/química , Fenóis/farmacologia , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos
7.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 2): 244-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24637766

RESUMO

Staphylococcus aureus is the causative agent of many diseases, including meningitis, bacteraemia, pneumonia, food poisoning and toxic shock syndrome. Structural characterization of the PaaI-like thioesterase SAV0944 (SaPaaI) from S. aureus subsp. aureus Mu50 will aid in understanding its potential as a new therapeutic target by knowledge of its molecular details and cellular functions. Here, the recombinant expression, purification and crystallization of SaPaaI thioesterase from S. aureus are reported. This protein initially crystallized with the ligand coenzyme A using the hanging-drop vapour-diffusion technique with condition No. 40 of Crystal Screen from Hampton Research at 296 K. Optimal final conditions consisting of 24% PEG 4000, 100 mM sodium citrate pH 6.5, 12% 2-propanol gave single diffraction-quality crystals. These crystals diffracted to beyond 2 Å resolution at the Australian Synchrotron and belonged to space group P12(1)1, with unit-cell parameters a = 44.05, b = 89.05, c = 60.74 Å, ß = 100.5°. Initial structure determination and refinement gave an R factor and R(free) of 17.3 and 22.0%, respectively, confirming a positive solution in obtaining phases using molecular replacement.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Esterases/química , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Cristalização , Primers do DNA , Esterases/genética , Esterases/isolamento & purificação , Conformação Proteica
8.
PLoS One ; 9(8): e102348, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25118709

RESUMO

The Gcn5-related N-acetyltransferases (GNATs) are ubiquitously expressed in nature and perform a diverse range of cellular functions through the acetylation of small molecules and protein substrates. Using activated acetyl coenzyme A as a common acetyl donor, GNATs catalyse the transfer of an acetyl group to acceptor molecules including aminoglycoside antibiotics, glucosamine-6-phosphate, histones, serotonin and spermidine. There is often only very limited sequence conservation between members of the GNAT superfamily, in part, reflecting their capacity to bind a diverse array of substrates. In contrast, the secondary and tertiary structures are highly conserved, but then at the quaternary level there is further diversity, with GNATs shown to exist in monomeric, dimeric, or tetrameric states. Here we describe the X-ray crystallographic structure of a GNAT enzyme from Staphylococcus aureus with only low sequence identity to previously solved GNAT proteins. It contains many of the classical GNAT motifs, but lacks other hallmarks of the GNAT fold including the classic ß-bulge splayed at the ß-sheet interface. The protein is likely to be a dimer in solution based on analysis of the asymmetric unit within the crystal structure, homology with related GNAT family members, and size exclusion chromatography. The study provides the first high resolution structure of this enzyme, providing a strong platform for substrate and cofactor modelling, and structural/functional comparisons within this diverse enzyme superfamily.


Assuntos
Acetiltransferases/química , Proteínas de Bactérias/química , Staphylococcus aureus/enzimologia , Acetiltransferases/isolamento & purificação , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Dimerização , Escherichia coli/genética , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
9.
PLoS One ; 8(12): e82038, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339986

RESUMO

The translocation of macromolecules into the nucleus is a fundamental eukaryotic process, regulating gene expression, cell division and differentiation, but which is impaired in a range of significant diseases including cancer and viral infection. The import of proteins into the nucleus is generally initiated by a specific, high affinity interaction between nuclear localisation signals (NLSs) and nuclear import receptors in the cytoplasm, and terminated through the disassembly of these complexes in the nucleus. For classical NLSs (cNLSs), this import is mediated by the importin-α (IMPα) adaptor protein, which in turn binds to IMPß to mediate translocation of nuclear cargo across the nuclear envelope. The interaction and disassembly of import receptor:cargo complexes is reliant on the differential localisation of nucleotide bound Ran across the envelope, maintained in its low affinity, GDP-bound form in the cytoplasm, and its high affinity, GTP-bound form in the nucleus. This in turn is maintained by the differential localisation of Ran regulating proteins, with RanGAP in the cytoplasm maintaining Ran in its GDP-bound form, and RanGEF (Prp20 in yeast) in the nucleus maintaining Ran in its GTP-bound form. Here, we describe the 2.1 Å resolution x-ray crystal structure of IMPα in complex with the NLS of Prp20. We observe 1,091 Å(2) of buried surface area mediated by an extensive array of contacts involving residues on armadillo repeats 2-7, utilising both the major and minor NLS binding sites of IMPα to contact bipartite NLS clusters (17)RAKKMSK(23) and (3)KR(4), respectively. One notable feature of the major site is the insertion of Prp20NLS Ala(18) between the P0 and P1 NLS sites, noted in only a few classical bipartite NLSs. This study provides a detailed account of the binding mechanism enabling Prp20 interaction with the nuclear import receptor, and additional new information for the interaction between IMPα and cargo.


Assuntos
Proteínas Ativadoras de GTPase/química , Sinais de Localização Nuclear/química , alfa Carioferinas/química , Transporte Ativo do Núcleo Celular , Animais , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Camundongos , Membrana Nuclear/química , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Estrutura Quaternária de Proteína , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo
10.
J Virol Methods ; 189(1): 118-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403150

RESUMO

Expression of recombinant beak and feather disease virus (BFDV) capsid-associated protein (Cap) has relied on inefficient techniques that typically produce low yields or use specialized expression systems, which greatly increase the cost and expertise required for mass production. An Escherichia coli system was used to express recombinant BFDV Cap derived from two isolates of BFDV, from a Long-billed Corella (Cacatua tenuirostris) and an Orange-bellied parrot (OBP; Neophema chrysogaster). Purification by affinity and size exclusion chromatography was optimized through an iterative process involving screening and modification of buffer constituents and pH. A buffer containing glycerol, ß-mercaptoethanol, Triton X-100, and a high concentration of NaCl at pH 8 was used to increase solubility of the protein. The final concentration of the corella-isolated BFDV protein was fifteen- to twenty-fold greater than that produced in previous publications using E. coli expression systems. Immunoassays were used to confirm the specific antigenicity of recombinant Cap, verifying its validity for use in continued experimentation as a potential vaccine, a reagent in diagnostic assays, and as a concentrated sample for biological discoveries.


Assuntos
Doenças das Aves/virologia , Proteínas do Capsídeo/genética , Infecções por Circoviridae/veterinária , Circovirus/genética , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Infecções por Circoviridae/virologia , Circovirus/classificação , Clonagem Molecular , Cacatuas/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Papagaios/virologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Prog Lipid Res ; 49(4): 366-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20470824

RESUMO

Acyl-coenzyme A thioesterases (Acots) play important cellular roles in mammalian fatty acid metabolism through modulation of cellular concentrations of activated fatty acyl-CoAs. Acots catalyse the hydrolysis of the thioester bond present within acyl-CoA ester molecules to yield coenzyme A (CoASH) and the corresponding non-esterified fatty acid. Acyl-CoA thioesterases are expressed ubiquitously in both prokaryotes and eukaryotes and, in higher order organisms, the enzymes are expressed and localised in a tissue-dependent manner within the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. Recent studies have led to advances in the functional and structural characterization of many mammalian Acot family members. These include the structure determination of both type-I and type-II Acot family members, structural elucidation of the START domain of ACOT11, identification of roles in arachidonic acid and inflammatory prostaglandin production by Acot7, and inclusion of a 13th Acot family member. Here, we review and analyse the current literature on mammalian Acots with respect to their characterization and summarize the current knowledge on the structure, function and regulation of this enzyme family.


Assuntos
Acil Coenzima A/metabolismo , Isoenzimas , Metabolismo dos Lipídeos , Tioléster Hidrolases , Animais , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Modelos Moleculares , Peroxissomos/enzimologia , Conformação Proteica , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA