Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant Cell ; 36(1): 40-64, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37811656

RESUMO

Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.


Assuntos
Citocininas , Oryza , Humanos , Citocininas/metabolismo , Inflorescência , Oryza/metabolismo , Retroalimentação , Fazendeiros , Ligantes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Plant Cell ; 32(5): 1501-1518, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205456

RESUMO

Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.


Assuntos
Padronização Corporal , Citocininas/metabolismo , Mutação/genética , Folhas de Planta/embriologia , Folhas de Planta/genética , Transdução de Sinais , Zea mays/genética , Sítios de Ligação , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligantes , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima/genética
3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511169

RESUMO

It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.


Assuntos
Arabidopsis , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Filogenia , Tetraploidia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203244

RESUMO

Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is still a challenge for plant biologists. To date, only two fragments of the CK receptor structure, the sensory module and the receiver domain, were experimentally resolved. Some other regions were built up by molecular modeling based on structures of proteins homologous to CK receptors. However, in the long term, these data have proven insufficient for solving the structure of the full-sized CK receptor. The functional unit of CK receptor is the receptor dimer. In this article, a molecular structure of the dimeric form of the full-length CK receptor based on AlphaFold Multimer and ColabFold modeling is presented for the first time. Structural changes of the receptor upon interacting with phosphotransfer protein are visualized. According to mathematical simulation and available data, both types of dimeric receptor complexes with hormones, either half- or fully liganded, appear to be active in triggering signals. In addition, the prospects of using this and similar models to address remaining fundamental problems of CK signaling were outlined.


Assuntos
Citocininas , Reguladores de Crescimento de Plantas , Humanos , Membrana Celular , Simulação por Computador , Pessoal de Saúde , Histidina Quinase/genética , Polímeros
5.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176101

RESUMO

The main reserve polysaccharide of plants-starch-is undoubtedly important for humans. One of the main sources of starch is the potato tuber, which is able to preserve starch for a long time during the so-called dormancy period. However, accumulated data show that this dormancy is only relative, which raises the question of the possibility of some kind of starch restructuring during dormancy periods. Here, the effect of long-term periods of tuber rest (at 2-4 °C) on main parameters of starches of potato tubers grown in vivo or in vitro were studied. Along with non-transgenic potatoes, Arabidopsis phytochrome B (AtPHYB) transformants were investigated. Distinct changes in starch micro and macro structures-an increase in proportion of amorphous lamellae and of large-sized and irregular-shaped granules, as well as shifts in thickness of the crystalline lamellae-were detected. The degree of such alterations, more pronounced in AtPHYB-transgenic tubers, increased with the longevity of tuber dormancy. By contrast, the polymorphic crystalline structure (B-type) of starch remained unchanged regardless of dormancy duration. Collectively, our data support the hypothesis that potato starch remains metabolically and structurally labile during the entire tuber life including the dormancy period. The revealed starch remodeling may be considered a process of tuber preadaptation to the upcoming sprouting stage.


Assuntos
Solanum tuberosum , Amido , Humanos , Amido/química , Solanum tuberosum/química , Tubérculos , Plantas , Termodinâmica
6.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361937

RESUMO

Auxins and cytokinins are considered the most important plant hormones, responsible for fundamental traits of the plant organism [...].


Assuntos
Citocininas , Ácidos Indolacéticos , Transporte Biológico , Transdução de Sinais , Reguladores de Crescimento de Plantas , Percepção , Regulação da Expressão Gênica de Plantas , Raízes de Plantas
7.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232653

RESUMO

Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ribonucleosídeos , Adenina , Adenosina/farmacologia , Aminas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Compostos de Benzil , Carbono , Proteínas de Transporte , Citocininas/química , Citocininas/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Reguladores de Crescimento de Plantas , Proteínas Quinases/metabolismo , Purinas
8.
Planta ; 255(1): 27, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940934

RESUMO

MAIN CONCLUSION: The free bases of cytokinins are the biologically active forms of the hormone while cytokinin ribosides become active only upon removal of the ribose residue. Cytokinins (CKs) belong to the classical plant hormones. They were discovered more than 65 years ago, but which molecular forms possess genuine CK activity is still matter of debate. Numerous studies support the view that only the free bases are the biologically active molecules. This standpoint has been challenged in a recent review (Nguyen et al. in Planta 254: 45, 2021) proposing that also CK ribosides may have genuine own CK activity. Here we critically discuss the pros and cons of this viewpoint considering the results of biological assays, CK binding studies, 3D structural data of CK-receptor interaction and mutant analyses. It is concluded that all types of study provide clear and convincing evidence only for biological activity of free bases and not ribosides; the latter are rather a transport form of the hormone without their own biological activity.


Assuntos
Citocininas , Reguladores de Crescimento de Plantas , Glicosídeos
9.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884882

RESUMO

Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.


Assuntos
Citocininas/metabolismo , Embriófitas/metabolismo , Histidina Quinase/metabolismo , Isopenteniladenosina/metabolismo , Bryopsida/metabolismo , Biologia Computacional , Concentração de Íons de Hidrogênio , Picea/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Especificidade por Substrato
10.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360972

RESUMO

Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Solanum tuberosum/metabolismo , Genes de Plantas , Desenvolvimento Vegetal , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Sacarose/metabolismo
11.
Anal Biochem ; 599: 113734, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305427

RESUMO

The aqueous two-phase partition system (ATPS) is a method widely used to separate and purify plant and animal membranes carrying bound proteins. However, a common problem of this separation is a mutual contamination of obtained phases. Such contamination adversely affects the accuracy of values of the protein of interest partition between particular membranes when determined by direct measurement. In order to overcome this problem, we have developed a fairly simple mathematical algorithm and found formulas designed to quantify correctly the distribution of the protein of interest between two different membranes. This new tool makes it possible to determine the bias-adjusted ratio of protein distribution between the membranes, regardless of the efficiency of membrane separation in a two-phase system. By means of this algorithm, not only current, but also a number of previously published ATPS-based experiments were (re)analyzed and quantified. The quantitative results of this large-scale analysis of the subcellular localization of various membrane proteins from Arabidopsis, potato, melon, and corn including cytokinin and ethylene receptors, ABCG14 cytokinin transporters, LRR receptor-like protein kinases, and BAK1 co-receptors are presented and discussed here.


Assuntos
Membranas Intracelulares/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Algoritmos , Fracionamento Químico
12.
Plant Cell Rep ; 38(6): 681-698, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30739137

RESUMO

The study of the effects of auxins on potato tuberization corresponds to one of the oldest experimental systems in plant biology, which has remained relevant for over 70 years. However, only recently, in the postgenomic era, the role of auxin in tuber formation and other vital processes in potatoes has begun to emerge. This review describes the main results obtained over the entire period of auxin-potato research, including the effects of exogenous auxin; the content and dynamics of endogenous auxins; the effects of manipulating endogenous auxin content; the molecular mechanisms of auxin signaling, transport and inactivation; the role and position of auxin among other tuberigenic factors; the effects of auxin on tuber dormancy; the prospects for auxin use in potato biotechnology. Special attention is paid to recent insights into auxin function in potato tuberization and stress resistance. Taken together, the data discussed here leave no doubt on the important role of auxin in potato tuberization, particularly in the processes of tuber initiation, growth and sprouting. A new integrative model for the stage-dependent auxin action on tuberization is presented. In addition, auxin is shown to differentially affects the potato resistance to biotrophic and necrotrophic biopathogens. Thus, the modern auxin biology opens up new perspectives for further biotechnological improvement of potato crops.


Assuntos
Ácidos Indolacéticos/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
13.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31035389

RESUMO

The signaling of cytokinins (CKs), classical plant hormones, is based on the interaction of proteins that constitute the multistep phosphorelay system (MSP): catalytic receptors-sensor histidine kinases (HKs), phosphotransmitters (HPts), and transcription factors-response regulators (RRs). Any CK receptor was shown to interact in vivo with any of the studied HPts and vice versa. In addition, both of these proteins tend to form a homodimer or a heterodimeric complex with protein-paralog. Our study was aimed at explaining by molecular modeling the observed features of in planta protein-protein interactions, accompanying CK signaling. For this purpose, models of CK-signaling proteins' structure from Arabidopsis and potato were built. The modeled interaction interfaces were formed by rather conserved areas of protein surfaces, complementary in hydrophobicity and electrostatic potential. Hot spots amino acids, determining specificity and strength of the interaction, were identified. Virtual phosphorylation of conserved Asp or His residues affected this complementation, increasing (Asp-P in HK) or decreasing (His-P in HPt) the affinity of interacting proteins. The HK-HPt and HPt-HPt interfaces overlapped, sharing some of the hot spots. MSP proteins from Arabidopsis and potato exhibited similar properties. The structural features of the modeled protein complexes were consistent with the experimental data.


Assuntos
Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Modelos Biológicos , Ligação Proteica
14.
New Phytol ; 218(1): 41-53, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29355964

RESUMO

Content Summary 47 I. Introduction 47 II. Historical outline 48 III. Recent developments 49 IV. Towards an integrative concept for cytokinin receptor signaling 54 Acknowledgements 57 References 57 SUMMARY: Cytokinin signaling plays an important role in plant growth and development, and therefore its molecular characteristics are under extensive study. One characteristic is the subcellular localization of cytokinin signal initiation. This localization determines both the pathway for hormone delivery to the receptor, as well as molecular aspects of signal transfer to the primary cellular targets. Subcellular sites for the onset of cytokinin signaling are still uncertain and experimental data are in part controversial. A few years ago, cytokinin receptors were shown to be localized predominantly in the membrane of the endoplasmic reticulum (ER) and to possess some features, such as their pH activity profile, typical for intracellular proteins. Very recently, new data corroborating the functionality of ER-located cytokinin receptors were reported. However, other work argued for cytokinin perception to occur at the plasma membrane (PM). Here, we discuss in detail these partially conflicting data and present an integrative model for cytokinin perception and signaling. In our opinion, the prevailing evidence argues for the ER being the predominant site of cytokinin signal perception but also that signal initiation at the PM might be relevant in some circumstances as well. The roles of these pathways in long-distance, paracrine and autocrine cytokinin signaling are discussed.


Assuntos
Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplasmático/metabolismo , Transdução de Sinais , Modelos Biológicos , Receptores de Superfície Celular/metabolismo
15.
J Exp Bot ; 69(16): 3839-3853, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29800344

RESUMO

Potato is the most economically important non-cereal food crop. Tuber formation in potato is regulated by phytohormones, cytokinins (CKs) in particular. The present work studied CK signal perception in potato. The sequenced potato genome of doubled monoploid Phureja was used for bioinformatic analysis and as a tool for identification of putative CK receptors from autotetraploid potato cv. Désirée. All basic elements of multistep phosphorelay required for CK signal transduction were identified in the Phureja genome, including three genes orthologous to three CK receptor genes (AHK 2-4) of Arabidopsis. As distinct from Phureja, autotetraploid potato contains at least two allelic isoforms of each receptor type. Putative receptor genes from Désirée plants were cloned, sequenced and expressed, and the main characteristics of encoded proteins were determined, in particular their consensus motifs, modelled structure, ligand-binding properties, and ability to transmit CK signals. In all studied aspects the predicted sensor histidine kinases met the requirements for genuine CK receptors. Expression of potato CK receptors was found to be organ-specific and sensitive to growth conditions, particularly to sucrose content. Our results provide a solid basis for further in-depth study of CK signaling system and biotechnological improvement of potato.


Assuntos
Citocininas/metabolismo , Receptores de Superfície Celular/metabolismo , Solanum tuberosum/metabolismo , Alelos , Sequência de Aminoácidos , Biotecnologia , Genes de Plantas , Homozigoto , Filogenia , Regiões Promotoras Genéticas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Solanum tuberosum/genética , Sacarose/metabolismo
16.
Mol Genet Genomics ; 292(5): 1013-1026, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28523359

RESUMO

Methylation of cytosine residues in DNA of higher eukaryotes, including humans, creates "hot spots" of C→T transitions in the genome. The predominantly methylated sequence in mammalian DNAs is CG (CpG). Among CG-containing codons, CGA codons for arginine are unique due to their ability to create stop codons TGA (UGA in mRNA) upon epigenetic-mediated mutation. As such nonsense mutations can have a strong adverse effect on the cell and organism, we have performed a study, on the example of human genes, aimed to characterise the anticipated effects of epigenetic-mediated nonsense mutations CGA→TGA in somatic cells. It is commonly accepted that premature termination codons (PTCs) lead to the biosynthesis of truncated and usually inactive proteins. In addition, transcripts with PTC can be destroyed by a nonsense-mediated mRNA decay (NMD) machinery. We have considered the cell potentialities (gene families, diploidy, and alternative splicing) to overcome the worst consequences of nonsense mutation. As a special case, in the biosynthesis of a particular group of proteins called selenoproteins, the mutation CGA→UGA would not lead to the premature translation termination and NMD but rather to the insertion of selenocysteine or cysteine instead of former arginine. The finding of SECIS (Sel insertion sequence)-like structures in a variety of mRNAs allowed us to postulate the existence of facultative selenoproteins, whose biosynthesis might be coupled with the redefinition of premature UGA stop codons arising upon mutations, as in the case of "classic" selenoproteins. Nevertheless, a detailed structural analysis of 165 transcripts has shown that roughly 80-90% of functional human mRNAs are potential substrates for NMD upon the PTC emergence. A hypothesis was put forward highlighting a role of arginine CGA codons together with glutamine CAA and CAG codons in the control of mRNA quality and life span. According to this hypothesis, the conversion of the ribonucleic codons CGA, CAA, or CAG into stop codons UGA, UAA or UAG owing to spontaneous or enzymatic cytosine deamination might serve as a trigger for the transcript destruction by NMD (C→U control). Thus, the consequences of epigenetic-mediated nonsense mutations are diverse and may largely depend on the structure of the transcript (CGA codon position, the presence and position of introns and SECIS elements, and splicing potential) of the cognate gene. However, this diversity and the presumable role of CGA codons in performing the everyday function by controlling whether genes are expressed correctly do not exclude their long-term role as limiters of the cell and organism life span. Thus, the presumable role of CGA codons in genome functioning and stability opens new perspectives to influence aging and concomitant deceases by codon editing.


Assuntos
Envelhecimento/genética , Arginina/genética , Códon sem Sentido/genética , Metilação de DNA/genética , Selenoproteínas/genética , Processamento Alternativo/genética , Catalase/genética , Expressão Gênica/genética , Glutamina/genética , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , Selenocisteína/genética
17.
Plant Cell Rep ; 36(3): 419-435, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27999977

RESUMO

KEY MESSAGE: Ectopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro. Adding indole-3-acetic acid (IAA) or kinetin to culture medium affected differently tuberization of tms1-transformed and control plants, depending also on sucrose content in the medium. Exogenous phytohormones ceased to stimulate the tuber initiation in transformants at high (5-8%) sucrose concentration, while in control plants the stimulation was observed in all experimental settings. Furthermore, exogenous auxin partly inhibited the tuber initiation, and exogenous cytokinin reduced the average tuber weight in most transformants at high sucrose content. The elevated auxin level in tubers of the transformants was accompanied with a decrease in content of cytokinin bases and their ribosides in tubers and most shoots. No concerted changes in contents of abscisic, jasmonic, salicylic acids and gibberellins in tubers were detected. The data on hormonal status indicated that the enhanced productivity of tms1 transformants was due to auxin and not mediated by other phytohormones. In addition, exogenous cytokinin was shown to upregulate the expression of genes encoding orthologs of auxin receptors. Overall, the results showed that tms1 expression and local increase in IAA level in transformants affect both the balance of endogenous cytokinins and the dynamics of tuberization in response to exogenous hormones (auxin, cytokinin), the latter reaction depending also on the carbohydrate supply. We introduce a basic model for the hormonal network controlling tuberization.


Assuntos
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Tubérculos/genética , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Biomassa , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cinetina/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Tubérculos/efeitos dos fármacos , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Solanum tuberosum/efeitos dos fármacos , Transformação Genética/efeitos dos fármacos
18.
J Exp Bot ; 66(7): 1851-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609827

RESUMO

Cytokinin receptors play a key role in cytokinin-dependent processes regulating plant growth, development, and adaptation; therefore, the functional properties of these receptors are of great importance. Previously the properties of cytokinin receptors were investigated in heterologous assay systems using unicellular microorganisms, mainly bacteria, expressing receptor proteins. However, within microorganisms receptors reside in an alien environment that might distort the receptor properties. Therefore, a new assay system has been developed allowing studies of individual receptors within plant membranes (i.e. closer to their natural environment). The main ligand-binding characteristics of receptors from Arabidopsis [AHK2, AHK3, and AHK4] and maize (ZmHK1) were refined in this new system, and the properties of full-length Arabidopsis receptor AHK2 were characterized for the first time. Ligand specificity profiles of receptors towards cytokinin bases were comparable with the profiles retrieved in bacterial assay systems. In contrast, cytokinin-9-ribosides displayed a strongly reduced affinity for receptors in the plant assay system, indicating that ribosides as the common transport form of cytokinins have no or very weak cytokinin activity. This underpins the central role of free bases as the sole biologically active cytokinin compounds. According to molecular modelling and docking studies, N (9)-ribosylation alters the bonding pattern in cytokinin-receptor interaction and prevents ß6-ß7 loop movement important for tight hormone binding. A common feature of all receptors was a greatly reduced ligand binding at low (5.0-5.5) pH. The particularly high sensitivity of ZmHK1 to pH changes leads to the suggestion that some cytokinin receptors may play an additional role as pH sensors in the lumen of the endoplasmic reticulum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Modelos Moleculares , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Histidina Quinase , Concentração de Íons de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
J Integr Plant Biol ; 57(9): 734-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25421937

RESUMO

Phytohormones, auxins in particular, play an important role in plant development and productivity. Earlier data showed positive impact of exogenous auxin on potato (Solanum tuberosum L.) tuberization. The aim of this study was to generate potato plants with increased auxin level predominantly in tubers. To this end, a pBinB33-tms1 vector was constructed harboring the Agrobacterium auxin biosynthesis gene tms1 fused to tuber-specific promoter of the class I patatin gene (B33-promoter) of potato. Among numerous independently generated B33:tms1 lines, those without visible differences from control were selected for detailed studies. In the majority of transgenic lines, tms1 gene transcription was detected, mostly in tubers rather than in shoots. Indoleacetic acid (IAA) content in tubers and the auxin tuber-to-shoot ratio were increased in tms1-expressing transformants. The organ-specific increase in auxin synthesis in B33:tms1-transformants accelerated and intensified the process of tuber formation, reduced the dose of carbohydrate supply required for in vitro tuberization, and decreased the photoperiodic dependence of tuber initiation. Overall, a positive correlation was observed between tms1 expression, IAA content in tubers, and stimulation of tuber formation. The revealed properties of B33:tms1 transformants imply an important role for auxin in potato tuberization and offer prospects to magnify potato productivity by a moderate organ-specific enhancement of auxin content.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
20.
Plant Cell Rep ; 32(6): 781-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23525743

RESUMO

Cytokinins are ubiquitous plant hormones; their signal is perceived by sensor histidine kinases-cytokinin receptors. This review focuses on recent advances on cytokinin receptor structure, in particular sensing module and adjacent domains which play an important role in hormone recognition, signal transduction and receptor subcellular localization. Principles of cytokinin binding site organization and point mutations affecting signaling are discussed. To date, more than 100 putative cytokinin receptor genes from different plant species were revealed due to the total genome sequencing. This allowed us to employ an evolutionary and bioinformatics approaches to clarify some new aspects of receptor structure and function. Non-transmembrane areas adjacent to the ligand-binding CHASE domain were characterized in detail and new conserved protein motifs were recovered. Putative mechanisms for cytokinin-triggered receptor activation were suggested.


Assuntos
Arabidopsis/genética , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Receptores de Superfície Celular/química , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Biologia Computacional , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA