Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 28(5): 697-710, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35168996

RESUMO

The human immunodeficiency virus type 1 (HIV-1) encodes multiple RNA molecules. Transcripts that originate from the proviral 5' long terminal repeat (LTR) function as messenger RNAs for the expression of 16 different mature viral proteins. In addition, HIV-1 expresses an antisense transcript (Ast) from the 3'LTR, which has both protein-coding and noncoding properties. While the mechanisms that regulate the coding and noncoding activities of Ast remain unknown, post-transcriptional modifications are known to influence RNA stability, interaction with protein partners, and translation capacity. Here, we report the nucleoside modification profile of Ast obtained through liquid chromatography coupled with mass spectrometry (LC-MS) analysis. The epitranscriptome includes a limited set of modified nucleosides but predominantly ribose methylations. A number of these modifications were mapped to specific positions of the sequence through RNA modification mapping procedures. The presence of modifications on Ast is consistent with the RNA-modifying enzymes interacting with Ast The identification and mapping of Ast post-transcriptional modifications is expected to elucidate the mechanisms through which this versatile molecule can carry out diverse activities in different cell compartments. Manipulation of post-transcriptional modifications on the Ast RNA may have therapeutic implications.


Assuntos
HIV-1 , Cromatografia Líquida , HIV-1/genética , HIV-1/metabolismo , Humanos , Nucleosídeos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Antissenso/genética , Sequências Repetidas Terminais
2.
Retrovirology ; 20(1): 6, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194028

RESUMO

Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.


Assuntos
HIV-1 , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Deltaretrovirus/genética , Proteínas Virais/genética , Regiões Promotoras Genéticas , HIV-1/genética
3.
J Transl Med ; 19(1): 453, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717655

RESUMO

HIV-1 reservoirs persist in the presence of combined antiretroviral therapy (cART). However, cART has transformed HIV-1 infection into a chronic disease marked by control of HIV-1 viral load and mortality reduction. Major challenges remain, including viral resistance upon termination of cART and persistence and identification of tissue distribution of HIV-1 reservoirs. Thus, appropriate animal models that best mimic HIV-1 pathogenesis are important, and the current study complements our previously published validation of the CD34+ hematopoietic humanized mouse model for this purpose. Here we analyze viral suppression using the recently developed combination of antiretrovirals that include Tenofovir Disoproxil (TDF), Emtricitabine (FTC), and Dolutegravir (DTG), a choice based on recent clinical outcomes showing its improved antiretroviral potency, CD4+ T cell preservation, tolerability, and prevention of viral drug resistance compared to that of previous regimens. We used quantitative Airyscan-based super resolution confocal microscopy of selected mouse tissues. Our data allowed us to identify specific solid tissue reservoirs of human T cells expressing the HIV-1 core protein p24. In particular, lymph node, brain, spleen, and liver were visualized as reservoirs for residual infected cells. Marked reduction of viral replication was evident. Considering that detection and visualization of cryptic sites of HIV-1 infection in tissues are clearly crucial steps towards HIV-1 eradication, appropriate animal models with pseudo-human immune systems are needed. In fact, current studies with humans and non-human primates have limited sample availability at multiple stages of infection and cannot easily analyze the effects of differently administered combined antiretroviral treatments on multiple tissues. That is easier to manage when working with humanized mouse models, although we realize the limitations due to low human cell recovery and thus the number of cells available for thorough and comprehensive analyses. Nonetheless, our data further confirm that the CD34+ humanized mouse model is a potentially useful pre-clinical model to study and improve current anti-HIV-1 therapies.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Animais , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Emtricitabina/farmacologia , Emtricitabina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis , Camundongos , Oxazinas , Piperazinas , Piridonas , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Carga Viral
4.
Proc Natl Acad Sci U S A ; 115(51): E12005-E12014, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509983

RESUMO

We isolated a strain of human mycoplasma that promotes lymphomagenesis in SCID mice, pointing to a p53-dependent mechanism similar to lymphomagenesis in uninfected p53-/- SCID mice. Additionally, mycoplasma infection in vitro reduces p53 activity. Immunoprecipitation of p53 in mycoplasma-infected cells identified several mycoplasma proteins, including DnaK, a member of the Hsp70 chaperon family. We focused on DnaK because of its ability to interact with proteins. We demonstrate that mycoplasma DnaK interacts with and reduces the activities of human proteins involved in critical cellular pathways, including DNA-PK and PARP1, which are required for efficient DNA repair, and binds to USP10 (a key p53 regulator), impairing p53-dependent anticancer functions. This also reduced the efficacy of anticancer drugs that depend on p53 to exert their effect. mycoplasma was detected early in the infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found in some primary and secondary tumors, pointing toward a hit-and-run/hide mechanism of transformation. Uninfected bystander cells took up exogenous DnaK, suggesting a possible paracrine function in promoting malignant transformation, over and above cells infected with the mycoplasma. Phylogenetic amino acid analysis shows that other bacteria associated with human cancers have similar DnaKs, consistent with a common mechanism of cellular transformation mediated through disruption of DNA-repair mechanisms, as well as p53 dysregulation, that also results in cancer-drug resistance. This suggests that the oncogenic properties of certain bacteria are DnaK-mediated.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Chaperonas Moleculares/genética , Mycoplasma/genética , Adenosina Trifosfatases/classificação , Animais , Antineoplásicos/uso terapêutico , Proteínas de Bactérias/classificação , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Reparo do DNA , DNA Bacteriano/genética , Proteína Quinase Ativada por DNA/metabolismo , Modelos Animais de Doenças , Genes Bacterianos/genética , Células HCT116 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Linfoma/genética , Linfoma/microbiologia , Linfoma/patologia , Camundongos , Camundongos SCID , Chaperonas Moleculares/classificação , Mycoplasma/patogenicidade , Infecções por Mycoplasma/microbiologia , Mycoplasma fermentans/genética , Mycoplasma fermentans/patogenicidade , Oncogenes , Filogenia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Análise de Sequência , Análise de Sequência de Proteína , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo
5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434734

RESUMO

The negative strand of HIV-1 encodes a highly hydrophobic antisense protein (ASP) with no known homologs. The presence of humoral and cellular immune responses to ASP in HIV-1 patients indicates that ASP is expressed in vivo, but its role in HIV-1 replication remains unknown. We investigated ASP expression in multiple chronically infected myeloid and lymphoid cell lines using an anti-ASP monoclonal antibody (324.6) in combination with flow cytometry and microscopy approaches. At baseline and in the absence of stimuli, ASP shows polarized subnuclear distribution, preferentially in areas with low content of suppressive epigenetic marks. However, following treatment with phorbol 12-myristate 13-acetate (PMA), ASP translocates to the cytoplasm and is detectable on the cell surface, even in the absence of membrane permeabilization, indicating that 324.6 recognizes an ASP epitope that is exposed extracellularly. Further, surface staining with 324.6 and anti-gp120 antibodies showed that ASP and gp120 colocalize, suggesting that ASP might become incorporated in the membranes of budding virions. Indeed, fluorescence correlation spectroscopy studies showed binding of 324.6 to cell-free HIV-1 particles. Moreover, 324.6 was able to capture and retain HIV-1 virions with efficiency similar to that of the anti-gp120 antibody VRC01. Our studies indicate that ASP is an integral protein of the plasma membranes of chronically infected cells stimulated with PMA, and upon viral budding, ASP becomes a structural protein of the HIV-1 envelope. These results may provide leads to investigate the possible role of ASP in the virus replication cycle and suggest that ASP may represent a new therapeutic or vaccine target.IMPORTANCE The HIV-1 genome contains a gene expressed in the opposite, or antisense, direction to all other genes. The protein product of this antisense gene, called ASP, is poorly characterized, and its role in viral replication remains unknown. We provide evidence that the antisense protein, ASP, of HIV-1 is found within the cell nucleus in unstimulated cells. In addition, we show that after PMA treatment, ASP exits the nucleus and localizes on the cell membrane. Moreover, we demonstrate that ASP is present on the surfaces of viral particles. Altogether, our studies identify ASP as a new structural component of HIV-1 and show that ASP is an accessory protein that promotes viral replication. The presence of ASP on the surfaces of both infected cells and viral particles might be exploited therapeutically.


Assuntos
Membrana Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas do Envelope Viral/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Transporte Proteico , Vírion/metabolismo
6.
J Pept Sci ; 21(7): 554-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25810135

RESUMO

Interferon-alpha (IFNα) is a cytokine that orchestrates innate and adaptive immune responses and potently inhibits proliferation of normal and tumor cells. These properties have warranted the use of IFNα in clinical practice for the treatment of several viral infections and malignancies. However, overexpression of IFNα leads to immunopathology observed in the context of chronic viral infections and autoimmune conditions. Thus, it is desirable to develop therapeutic approaches that aim at suppressing excessive IFNα production. To that end, artificial evolution of peptides from phage display libraries represents a strategy that seeks to disrupt the interaction between IFNα and its cell surface receptor and thus inhibit the ensuing biological effects. Mirror-image phage display that screens peptide libraries against the D-enantiomer is particularly attractive because it allows for identification of proteolysis-resistant D-peptide inhibitors. This approach, however, relies on the availability of chemically synthesized D-IFNα composed entirely of D-amino acids. Here, we describe the synthesis and biological properties of IFNα2b of 165 amino acid residues produced by native chemical ligation, which represents an important first step toward the discovery of D-peptide antagonists with potential therapeutic applications.


Assuntos
Interferon-alfa/síntese química , Biblioteca de Peptídeos , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dissulfetos/química , Vírus da Encefalomiocardite/efeitos dos fármacos , Vírus da Encefalomiocardite/crescimento & desenvolvimento , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Interferon alfa-2 , Interferon-alfa/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/farmacologia , Cultura Primária de Células , Dobramento de Proteína , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/farmacologia , Estereoisomerismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
7.
J Infect Dis ; 209(6): 940-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24259523

RESUMO

Aberrant activation of plasmacytoid dendritic cells (pDCs) with excessive production of interferon alpha (IFNα) represents one of the hallmarks of immune activation during chronic phase of human immunodeficiency virus (HIV) infection. A number of studies have shown that disruption of mucosal integrity in the gut is a cause of persistent immune activation. However, little is known about the role that pDCs play in this process, and our current understanding comes from the simian immunodeficiency virus macaque model. Thus, in the present study we sought to investigate the frequency and function of pDCs in peripheral blood and gut samples from HIV-infected individuals before and 6 months after initiation of antiretroviral therapy (ART). We show that circulating pDCs were depleted in ART-naive HIV+ patients, and upregulated the gut-homing receptor CD103 compared with uninfected controls. By converse, pDCs accumulated in the terminal ileum of ART-naive HIV individuals compared with controls. Baseline levels of IFNα production and markers of immune activation in gut samples of ART-naive HIV subjects were elevated. All these parameters declined after 6 months of ART. Our results suggest that in chronic HIV infection, pDCs migrate from peripheral blood to the gut-associated lymphatic tissue, where they may contribute to immune activation.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , Mucosa Intestinal/imunologia , Adulto , Idoso , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/patologia , Feminino , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Humanos , Íleo/imunologia , Íleo/patologia , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
8.
J Biol Chem ; 288(27): 20014-33, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23661700

RESUMO

Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/metabolismo , Exossomos/metabolismo , Repetição Terminal Longa de HIV , HIV-1/metabolismo , HIV-1/patogenicidade , RNA Viral/metabolismo , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/patologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Quinase 9 Dependente de Ciclina/biossíntese , Quinase 9 Dependente de Ciclina/genética , Regulação para Baixo , Exossomos/genética , Exossomos/patologia , HIV-1/genética , Células HeLa , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Viral/genética
9.
J Virol ; 87(16): 9148-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760244

RESUMO

Resting memory CD4(+) T cells are the largest reservoir of persistent infection in HIV-1-positive subjects. They harbor dormant, stably integrated virus despite suppressive antiretroviral therapy, posing an obstacle to a cure. Surface markers that identify latently infected cells remain unknown. Microarray analyses comparing resting latently infected and uninfected CD4(+) T cells generated in vitro showed profound differences in the expression of gene programs related to transcriptional and posttranscriptional regulation, cell proliferation, survival, cycle progression, and basic metabolism, suggesting that multiple biochemical and metabolic blocks contribute to preventing viral production in latently infected cells. We identified 33 transcripts encoding cell surface markers that are differentially expressed between latently infected and uninfected cells. Quantitative reverse transcriptase PCR (RT-QPCR) and flow cytometry analyses confirmed that the surface marker CD2 was expressed at higher levels on latently infected cells. To validate this result in vivo, we sorted resting memory CD4(+) T cells expressing high and low surface levels of CD2 from six HIV-1-infected subjects successfully treated with antiretroviral drugs for at least 3 years. Resting memory CD4(+) CD2(high) T cells from all subjects harbored higher HIV-1 DNA copy numbers than all other CD4(+) T cell subsets. Moreover, after ex vivo viral reactivation, robust viral RNA production was detected only from resting memory CD4(+) CD2(high) T cells but not from other cell subsets. Altogether, these results show that a high CD2 expression level is a hallmark of latently infected resting memory CD4(+) T cells in vivo.


Assuntos
Antígenos CD2/análise , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Memória Imunológica , Latência Viral , Linfócitos T CD4-Positivos/química , DNA Viral/análise , DNA Viral/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , HIV-1/genética , Humanos , Provírus/genética , RNA Viral/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Ativação Viral
10.
Microbiol Spectr ; 12(2): e0380223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230940

RESUMO

Despite being first identified more than three decades ago, the antisense gene asp of HIV-1 remains an enigma. asp is present uniquely in pandemic (group M) HIV-1 strains, and it is absent in all non-pandemic (out-of-M) HIV-1 strains and virtually all non-human primate lentiviruses. This suggests that the creation of asp may have contributed to HIV-1 fitness or worldwide spread. It also raises the question of which evolutionary processes were at play in the creation of asp. Here, we show that HIV-1 genomes containing an intact asp gene are associated with faster HIV-1 disease progression. Furthermore, we demonstrate that the creation of a full-length asp gene occurred via the evolution of codon usage in env overlapping asp on the opposite strand. This involved differential use of synonymous codons or conservative amino acid substitution in env that eliminated internal stop codons in asp, and redistribution of synonymous codons in env that minimized the likelihood of new premature stops arising in asp. Nevertheless, the creation of a full-length asp gene reduced the genetic diversity of env. The Luria-Delbruck fluctuation test suggests that the interrupted asp open reading frame (ORF) is the progenitor of the intact ORF, rather than a descendant under random genetic drift. Therefore, the existence of group-M isolates with a truncated asp ORF indicates an incomplete transition process. For the first time, our study links the presence of a full-length asp ORF to faster disease progression, thus warranting further investigation into the cellular processes and molecular mechanisms through which the ASP protein impacts HIV-1 replication, transmission, and pathogenesis.IMPORTANCEOverlapping genes engage in a tug-of-war, constraining each other's evolution. The creation of a new gene overlapping an existing one comes at an evolutionary cost. Thus, its conservation must be advantageous, or it will be lost, especially if the pre-existing gene is essential for the viability of the virus or cell. We found that the creation and conservation of the HIV-1 antisense gene asp occurred through differential use of synonymous codons or conservative amino acid substitutions within the overlapping gene, env. This process did not involve amino acid changes in ENV that benefited its function, but rather it constrained the evolution of ENV. Nonetheless, the creation of asp brought a net selective advantage to HIV-1 because asp is conserved especially among high-prevalence strains. The association between the presence of an intact asp gene and faster HIV-1 disease progression supports that conclusion and warrants further investigation.


Assuntos
HIV-1 , Animais , HIV-1/genética , Pandemias , Códon , Fases de Leitura Aberta , Progressão da Doença
11.
Viruses ; 15(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37515266

RESUMO

A common feature of the mammalian Lentiviruses (family Retroviridae) is an RNA genome that contains an extremely high frequency of adenine (31.7-38.2%) while being extremely poor in cytosine (13.9-21.2%). Such a biased nucleotide composition has implications for codon usage, causing a striking difference between the frequency of synonymous codons in Lentiviruses and that in their hosts. To test whether primate Lentiviruses present differences in codon and amino acid composition, we assembled a dataset of genome sequences that includes SIV species infecting Old-World monkeys and African apes, HIV-2, and the four groups of HIV-1. Using principal component analysis, we found that HIV-1 shows a significant enrichment in adenine plus thymine in the third synonymous codon position and in adenine and guanine in the first and second nonsynonymous codon positions. Similarly, we observed an enrichment in adenine and in guanine in nonsynonymous first and second codon positions, which affects the amino acid composition of the proteins Gag, Pol, Vif, Vpr, Tat, Rev, Env, and Nef. This result suggests an effect of natural selection in shaping codon usage. Under the hypothesis that the use of synonyms in HIV-1 could reflect adaptation to that of genes expressed in specific cell types, we found a highly significant correlation between codon usage in HIV-1 and monocytes, which was remarkably higher than that with B and T lymphocytes. This finding is in line with the notion that monocytes represent an HIV-1 reservoir in infected patients, and it could help understand how this reservoir is established and maintained.


Assuntos
HIV-1 , Lentivirus de Primatas , Animais , Aminoácidos/genética , Lentivirus de Primatas/genética , Uso do Códon , Códon , Lentivirus/genética , HIV-1/genética , Adenina , Guanina , Mamíferos
12.
Noncoding RNA ; 9(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36649034

RESUMO

Nucleosomes positioned on the HIV-1 5' long terminal repeat (LTR) regulate sense transcription as well as the establishment and maintenance of latency. A negative-sense promoter (NSP) in the 3' LTR expresses antisense transcripts with coding and non-coding activities. Previous studies identified cis-acting elements that modulate NSP activity. Here, we used the two chronically infected T cell lines, ACH-2 and J1.1, to investigate epigenetic regulation of NSP activity. We found that histones H3 and H4 are present on the 3' LTR in both cell lines. Following treatment with histone deacetylase inhibitors (HDACi), the levels of H3K27Ac increased and histone occupancy declined. HDACi treatment also led to increased levels of RNA polymerase II (RNPII) at NSP, and antisense transcription was induced with similar kinetics and to a similar extent as 5' LTR-driven sense transcription. We also detected H3K9me2 and H3K27me3 on NSP, along with the enzymes responsible for these epigenetic marks, namely G9a and EZH2, respectively. Treatment with their respective inhibitors had little or no effect on RNPII occupancy at the two LTRs, but it induced both sense and antisense transcription. Moreover, the increased expression of antisense transcripts in response to treatment with a panel of eleven latency-reversing agents closely paralleled and was often greater than the effect on sense transcripts. Thus, HIV-1 sense and antisense RNA expression are both regulated via acetylation and methylation of lysine 9 and 27 on histone H3. Since HIV-1 antisense transcripts act as non-coding RNAs promoting epigenetic silencing of the 5' LTR, our results suggest that the limited efficacy of latency-reversing agents in the context of 'shock and kill' cure strategies may be due to concurrent induction of antisense transcripts thwarting their effect on sense transcription.

13.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062351

RESUMO

Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure. The most frequent scenario involves two different reading frames in the same DNA strand (sense overlap). Much less frequent are cases of overlapping genes that are encoded on opposite DNA strands (antisense overlap). One such example is the antisense ORF, asp in the minus strand of the HIV-1 genome overlapping the env gene. The asp gene is highly conserved in pandemic HIV-1 strains of group M, and it is absent in non-pandemic HIV-1 groups, HIV-2, and lentiviruses infecting non-human primates, suggesting that the ~190-amino acid protein that is expressed from this gene (ASP) may play a role in virus spread. While the function of ASP in the virus life cycle remains to be elucidated, mounting evidence from several research groups indicates that ASP is expressed in vivo. There are two alternative hypotheses that could be envisioned to explain the origin of the asp ORF. On one hand, asp may have originally been present in the ancestor of contemporary lentiviruses, and subsequently lost in all descendants except for most HIV-1 strains of group M due to selective advantage. Alternatively, the asp ORF may have originated very recently with the emergence of group M HIV-1 strains from SIVcpz. Here, we used a combination of computational and statistical approaches to study the genomic region of env in primate lentiviruses to shed light on the origin, structure, and sequence evolution of the asp ORF. The results emerging from our studies support the hypothesis of a recent de novo addition of the antisense ORF to the HIV-1 genome through a process that entailed progressive removal of existing internal stop codons from SIV strains to HIV-1 strains of group M, and fine tuning of the codon sequence in env that reduced the chances of new stop codons occurring in asp. Altogether, the study supports the notion that the HIV-1 asp gene encodes an accessory protein, providing a selective advantage to the virus.


Assuntos
Genoma Viral , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Fases de Leitura Aberta , Proteínas do Envelope Viral/genética , Sequência de Bases , Códon , Evolução Molecular , Soropositividade para HIV/genética , Humanos
14.
Methods Mol Biol ; 2407: 31-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985655

RESUMO

HIV-1 establishes latency primarily by infecting activated CD4+ T cells that later return to quiescence as memory cells. Latency allows HIV-1 to evade immune responses and to persist during antiretroviral therapy, which represents an important problem in clinical practice. Here we describe both the original and a simplified version of HIV-1 latency models that mimics this process using replication competent viruses. Our model allows generation of large numbers of latently infected CD4+ T cell to dissect molecular mechanisms of HIV latency and reactivation.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Células Cultivadas , HIV-1/fisiologia , Humanos , Latência Viral/fisiologia , Replicação Viral
15.
Vaccines (Basel) ; 9(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067514

RESUMO

Viruses have developed incredibly creative ways of making a virtue out of necessity, including taking full advantage of their small genomes. Indeed, viruses often encode multiple proteins within the same genomic region by using two or more reading frames in both orientations through a process called overprinting. Complex retroviruses provide compelling examples of that. The human immunodeficiency virus type 1 (HIV-1) genome expresses sixteen proteins from nine genes that are encoded in the three positive-sense reading frames. In addition, the genome of some HIV-1 strains contains a tenth gene in one of the negative-sense reading frames. The so-called Antisense Protein (ASP) gene overlaps the HIV-1 Rev Response Element (RRE) and the envelope glycoprotein gene, and encodes a highly hydrophobic protein of ~190 amino acids. Despite being identified over thirty years ago, relatively few studies have investigated the role that ASP may play in the virus lifecycle, and its expression in vivo is still questioned. Here we review the current knowledge about ASP, and we discuss some of the many unanswered questions.

16.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946840

RESUMO

Natural antisense transcripts (NATs) represent a class of RNA molecules that are transcribed from the opposite strand of a protein-coding gene, and that have the ability to regulate the expression of their cognate protein-coding gene via multiple mechanisms. NATs have been described in many prokaryotic and eukaryotic systems, as well as in the viruses that infect them. The human immunodeficiency virus (HIV-1) is no exception, and produces one or more NAT from a promoter within the 3' long terminal repeat. HIV-1 antisense transcripts have been the focus of several studies spanning over 30 years. However, a complete appreciation of the role that these transcripts play in the virus lifecycle is still lacking. In this review, we cover the current knowledge about HIV-1 NATs, discuss some of the questions that are still open and identify possible areas of future research.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , RNA Antissenso , Transcrição Gênica , Replicação Viral , Regulação Viral da Expressão Gênica , Genoma Viral , Genômica/métodos , Humanos , RNA não Traduzido
17.
J Immunol ; 181(11): 7713-20, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017960

RESUMO

HIV-1 establishes latency primarily by infecting activated CD4(+) T cells that later return to quiescence as memory cells. Latency allows HIV-1 to evade immune responses and to persist during antiretroviral therapy, which represents an important problem in clinical practice. The lack of a valid cellular model to study HIV-1 latency has hindered advances in the understanding of its biology. In this study, we attempted to model HIV-1 latency using human primary CD4(+) T cells infected in vitro with HIV-1 after activation with Ag-loaded dendritic cells and then brought back to quiescence through a resting phase in the presence of IL-7. During the resting phase, expression of cellular activation markers disappeared and cell proliferation and viral replication ceased, but resumed following restimulation of rested cells with Ag or mAbs directed to CD3/CD28. In addition, higher cell death rates were observed in HIV-1-infected than uninfected cultures during secondary but not primary stimulation. Thus, this system may allow us to study the biology of HIV-1 latency, as well as the mechanisms of CD4(+) T cell death following HIV-1 reactivation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , Ativação Linfocitária/fisiologia , Modelos Biológicos , Ativação Viral/imunologia , Latência Viral/imunologia , Antígenos Virais/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/virologia , Morte Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , HIV-1 , Humanos , Memória Imunológica/imunologia , Interleucina-7/imunologia
18.
New Microbiol ; 33(1): 13-24, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20402410

RESUMO

The human immunodeficiency virus matrix protein p17 plays a critical role in many steps of the virus life cycle. In addition, p17 displays biological activities outside infected cells. Indeed, virus-neutralizing antibodies against p17 in plasma of infected patients correlate with slower disease progression, and p17 has been shown to interact with an as yet unidentified cell surface receptor expressed on peripheral blood B cells. The present study investigated intracellular signaling pathways triggered following this interaction. Using protein/DNA arrays, we show that p17 increases phosphorylation and the DNA-binding activity of CREB and c-Myc through the time- and dose-dependent activation of the cAMP/PKA and MEK/ERK signaling pathways. Interestingly, we found that both signaling pathways are synergistically activated upon co-stimulation through the CD19 receptor. As both CREB and c-Myc are involved in the regulation of cell proliferation, differentiation, and survival, our findings might suggest a potential mechanism of B cell lymphomagenesis during HIV-1 infection.


Assuntos
Linfócitos B/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Antígenos HIV/metabolismo , Infecções por HIV/genética , HIV-1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ativação Transcricional , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD19/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Antígenos HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , Células Hep G2 , Humanos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
19.
AIDS Res Hum Retroviruses ; 36(10): 835-841, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623916

RESUMO

The efficacy of combined antiretroviral therapy (cART) against HIV-1 is evidenced by reduction of plasma viremia, disease progression, viral transmission, and mortality. However, major challenges still remain in HIV-1 management, especially the emergence of resistant strains and the persistence of viral reservoirs, apparent after cART treatment interruption. Efforts are ongoing to explore the most effective means to intensify cART and successfully control residual viral replication. We anticipate that the reduction by cART of HIV-1 reservoirs could be further enhanced by combining cART with entry inhibitors and drugs that silence CCR5 expression. CCR5-targeting drugs are attractive option because of their low side effects when combined with other antiretroviral drugs. The concept that their inclusion would be effective has been supported by the reduction in two long terminal repeat unintegrated circular DNA, a marker for new infections, when CCR5-targeting drugs are added to standard antiretroviral treatment. This study is, in part, an extension of our previous study demonstrating greater preservation of human CD4+ T-cells and CD4+/CD8+ cell ratios in HIV-infected CD34+ NSG mice when CCR5-targeting drugs were included with standard cART. In this study, we treated HIV-1-infected cell cultures with cART or cART plus CCR5-targeting drugs (maraviroc and rapamycin). We found that treatment intensification with CCR5-targeting drugs led to a significant reduction of HIV-1 replication in peripheral blood ononuclear cells (PBMCs), as judged by measured viral DNA copies and p24 levels. Our data provide proof of principle for the benefit of adding CCR5-targeting drugs to traditional, standard cART to further lower viremia and subsequently reduce viral reservoirs in clinical settings, while potentially lowering side effects by reducing cART concentrations.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Preparações Farmacêuticas , Animais , Fármacos Anti-HIV/uso terapêutico , Relação CD4-CD8 , Infecções por HIV/tratamento farmacológico , Humanos , Maraviroc , Camundongos , Receptores CCR5 , Carga Viral
20.
Viruses ; 12(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977702

RESUMO

Human immunodeficiency virus 1 (HIV-1) is the most prevalent human retrovirus. Recent data show that 34 million people are living with HIV-1 worldwide. HIV-1 infections can lead to AIDS which still causes nearly 20,000 deaths annually in the USA alone. As this retrovirus leads to high morbidity and mortality conditions, more effective therapeutic regimens must be developed to treat these viral infections. A key target for intervention for which there are no current FDA-approved modulators is at the point of proviral transcription. One successful method for identifying novel therapeutics for treating infectious diseases is the repurposing of pharmaceuticals that are approved by the FDA for alternate indications. Major benefits of using FDA-approved drugs include the fact that the compounds have well established toxicity profiles, approved manufacturing processes, and immediate commercial availability to the patients. Here, we demonstrate that pharmaceuticals previously approved for other indications can be utilized to either activate or inhibit HIV-1 proviral transcription. Specifically, we found febuxostat, eltrombopag, and resveratrol to be activators of HIV-1 transcription, while mycophenolate was our lead inhibitor of HIV-1 transcription. Additionally, we observed that the infected cells of lymphoid and myeloid lineage responded differently to our lead transcriptional modulators. Finally, we demonstrated that the use of a multi-dose regimen allowed for enhanced activation with our transcriptional activators.


Assuntos
Fármacos Anti-HIV/farmacologia , Descoberta de Drogas , Reposicionamento de Medicamentos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Bases de Dados de Produtos Farmacêuticos , Células HeLa , Humanos , Células Jurkat , Provírus/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA