Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
2.
J Med Genet ; 61(2): 109-116, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734846

RESUMO

BACKGROUND: Weill-Marchesani syndrome (WMS) belongs to the group of acromelic dysplasias, defined by short stature, brachydactyly and joint limitations. WMS is characterised by specific ophthalmological abnormalities, although cardiovascular defects have also been reported. Monoallelic variations in FBN1 are associated with a dominant form of WMS, while biallelic variations in ADAMTS10, ADAMTS17 and LTBP2 are responsible for a recessive form of WMS. OBJECTIVE: Natural history description of WMS and genotype-phenotype correlation establishment. MATERIALS AND METHODS: Retrospective multicentre study and literature review. INCLUSION CRITERIA: clinical diagnosis of WMS with identified pathogenic variants. RESULTS: 61 patients were included: 18 individuals from our cohort and 43 patients from literature. 21 had variants in ADAMTS17, 19 in FBN1, 19 in ADAMTS10 and 2 in LTBP2. All individuals presented with eye anomalies, mainly spherophakia (42/61) and ectopia lentis (39/61). Short stature was present in 73% (from -2.2 to -5.5 SD), 10/61 individuals had valvulopathy. Regarding FBN1 variants, patients with a variant located in transforming growth factor (TGF)-ß-binding protein-like domain 5 (TB5) domain were significantly smaller than patients with FBN1 variant outside TB5 domain (p=0.0040). CONCLUSION: Apart from the ophthalmological findings, which are mandatory for the diagnosis, the phenotype of WMS seems to be more variable than initially described, partially explained by genotype-phenotype correlation.


Assuntos
Nanismo , Anormalidades do Olho , Síndrome de Weill-Marchesani , Humanos , Síndrome de Weill-Marchesani/genética , Síndrome de Weill-Marchesani/diagnóstico , Síndrome de Weill-Marchesani/patologia , Nanismo/genética , Fenótipo , Estudos de Associação Genética , Fibrilina-1/genética , Proteínas de Ligação a TGF-beta Latente/genética , Estudos Multicêntricos como Assunto
3.
Genet Med ; 26(1): 101007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37860968

RESUMO

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Metilação de DNA/genética , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
5.
Hum Genet ; 141(1): 65-80, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748075

RESUMO

Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.


Assuntos
Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Obesidade/genética , Fenótipo , Adulto Jovem
6.
Genet Med ; 23(2): 331-340, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33082559

RESUMO

PURPOSE: Geleophysic dysplasia (GD) and acromicric dysplasia (AD) are characterized by short stature, short extremities, and progressive joint limitation. In GD, cardiorespiratory involvement can result in poor prognosis. Dominant variants in the FBN1 and LTBP3 genes are responsible for AD or GD, whereas recessive variants in the ADAMTSL2 gene are responsible for GD only. The aim of this study was to define the natural history of these disorders and to establish genotype-phenotype correlations. METHODS: This monocentric retrospective study was conducted between January 2008 and December 2018 in a pediatric tertiary care center and included patients with AD or GD with identified variants (FBN1, LTBP3, or ADAMTSL2). RESULTS: Twenty-two patients with GD (12 ADAMTSL2, 8 FBN1, 2 LTBP3) and 16 patients with AD (15 FBN1, 1 LTBP3) were included. Early death occurred in eight GD and one AD. Among GD patients, 68% presented with heart valve disease and 25% developed upper airway obstruction. No AD patient developed life-threatening cardiorespiratory issues. A greater proportion of patients with either a FBN1 cysteine variant or ADAMTSL2 variants had a poor outcome. CONCLUSION: GD and AD are progressive multisystemic disorders with life-threatening complications associated with specific genotype. A careful multidisciplinary follow-up is needed.


Assuntos
Proteínas ADAMTS , Proteínas dos Microfilamentos , Proteínas ADAMTS/genética , Doenças do Desenvolvimento Ósseo , Criança , Fibrilina-1/genética , Fibrilinas , Estudos de Associação Genética , Humanos , Deformidades Congênitas dos Membros , Proteínas dos Microfilamentos/genética , Mutação , Estudos Retrospectivos
7.
Clin Genet ; 100(4): 386-395, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34164801

RESUMO

13q12.3 microdeletion syndrome is a rare cause of syndromic intellectual disability. Identification and genetic characterization of patients with 13q12.3 microdeletion syndrome continues to expand the phenotypic spectrum associated with it. Previous studies identified four genes within the approximately 300 Kb minimal critical region including two candidate protein coding genes: KATNAL1 and HMGB1. To date, no patients carrying a sequence-level variant or a single gene deletion in HMGB1 or KATNAL1 have been described. Here we report six patients with loss-of-function variants involving HMGB1 and who had phenotypic features similar to the previously described 13q12.3 microdeletion syndrome cases. Common features included developmental delay, language delay, microcephaly, obesity and dysmorphic features. In silico analyses suggest that HMGB1 is likely to be intolerant to loss-of-function, and previous in vitro data are in line with the role of HMGB1 in neurodevelopment. These results strongly suggest that haploinsufficiency of the HMGB1 gene may play a critical role in the pathogenesis of the 13q12.3 microdeletion syndrome.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Heterozigoto , Mutação com Perda de Função , Microcefalia/diagnóstico , Microcefalia/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Éxons , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Proteína HMGB1 , Humanos , Hibridização in Situ Fluorescente , Padrões de Herança , Cariótipo , Masculino , Fenótipo , Sequenciamento do Exoma
8.
Am J Med Genet A ; 185(7): 2108-2118, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33908178

RESUMO

Sleep-disordered breathing (SDB) is common in patients with skeletal dysplasias. The aim of our study was to analyze SDB and respiratory management in children with rare skeletal dysplasias. We performed a retrospective analysis of patients with spondyloepiphyseal dysplasia congenita (SEDC), metatropic dysplasia (MD), spondyloepimetaphyseal dysplasia (SEMD), acrodysostosis (ADO), geleophysic dysplasia (GD), acromicric dysplasia (AD), and spondylocostal dysplasia (SCD) between April 2014 and October 2020. Polygraphic data, clinical management, and patients' outcome were analyzed. Thirty-one patients were included (8 SEDC, 3 MD, 4 SEMD, 1 ADO, 4 GD, 3 AD, and 8 SCD). Sixteen patients had obstructive sleep apnea (OSA): 11 patients (2 with SEDC, 1 with SEMD, 1 with ADO, 1 with GD, 2 with AD, and 4 with SCD) had mild OSA, 2 (1 SEMD and 1 GD) had moderate OSA, and 3 (1 SEDC, 1 MD, 1 SEMD) had severe OSA. Adenotonsillectomy was performed in one patient with SCD and mild OSA, and at a later age in two other patients with ADO and AD. The two patients with moderate OSA were treated with noninvasive ventilation (NIV) because of nocturnal hypoxemia. The three patients with severe OSA were treated with adenotonsillectomy (1 SEDC), adeno-turbinectomy and continuous positive airway pressure (CPAP; 1 MD), and with NIV (1 SEMD) because of nocturnal hypoventilation. OSA and/or alveolar hypoventilation is common in patients with skeletal dysplasias, underlining the importance of systematic screening for SDB. CPAP and NIV are effective treatments for OSA and nocturnal hypoventilation/hypoxemia.


Assuntos
Disostoses/congênito , Deficiência Intelectual/terapia , Osteocondrodisplasias/congênito , Costelas/anormalidades , Síndromes da Apneia do Sono/terapia , Apneia Obstrutiva do Sono/terapia , Coluna Vertebral/anormalidades , Adenoidectomia , Adolescente , Adulto , Criança , Pré-Escolar , Pressão Positiva Contínua nas Vias Aéreas/métodos , Disostoses/diagnóstico por imagem , Disostoses/patologia , Disostoses/terapia , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/patologia , Osteocondrodisplasias/terapia , Polissonografia , Costelas/diagnóstico por imagem , Costelas/patologia , Síndromes da Apneia do Sono/diagnóstico por imagem , Síndromes da Apneia do Sono/patologia , Apneia Obstrutiva do Sono/diagnóstico por imagem , Apneia Obstrutiva do Sono/patologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Tonsilectomia , Resultado do Tratamento , Adulto Jovem
9.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916664

RESUMO

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


Assuntos
Metilação de DNA/genética , Doenças Genéticas Inatas/genética , Histonas/genética , Mutação , Doenças Raras/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Doenças Genéticas Inatas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/genética , Doenças Raras/metabolismo , DNA Metiltransferase 3B
10.
Am J Med Genet C Semin Med Genet ; 181(4): 509-518, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31643139

RESUMO

The common genes responsible for overgrowth syndromes play key roles in regulating transcription through histone modification and chromatin modeling. The SETD2 gene encoding a H3K36 trimethyltransferase is implicated in Sotos-like syndrome. This syndrome is characterized by postnatal overgrowth, macrocephaly, obesity, speech delay, and advanced carpal ossification. We report four new patients with constitutional SETD2 mutations and review nine earlier reported patients. Almost all patients presented with macrocephaly associated with advanced stature and obesity in half of the cases. In addition to these principal manifestations, neurodevelopmental disorders are common such as intellectual disability (83%), autism spectrum disorders (89%), and behavioral difficulties (100%) with aggressive outbursts (83%). A variety of features such as joint hypermobility (29%), hirsutism (33%), and naevi (50%) were also reported. Constitutional SETD2 mutations are intragenic loss-of-function variants with truncating (69%) and missense (31%) mutations. Functional studies are necessary to improve understanding of the pathogenicity of some missense SETD2 mutations.


Assuntos
Transtornos do Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Síndrome de Sotos/genética
12.
J Med Genet ; 55(2): 131-136, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28754700

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) disorders have a high clinical variability, mainly explained by variation of the mutant load across tissues. The high recurrence risk of these serious diseases commonly results in requests from at-risk couples for prenatal diagnosis (PND), based on determination of the mutant load on a chorionic villous sample (CVS). Such procedures are hampered by the lack of data regarding mtDNA segregation in the placenta.The objectives of this report were to determine whether mutant loads (1) are homogeneously distributed across the whole placentas, (2) correlate with those in amniocytes and cord blood cells and (3) correlate with the mtDNA copy number. METHODS: We collected 11 whole placentas carrying various mtDNA mutations (m.3243A>G, m.8344A>G, m.8993T>G, m.9185T>C and m.10197G>A) and, when possible, corresponding amniotic fluid samples (AFSs) and cord blood samples. We measured mutant loads in multiple samples from each placenta (n= 6-37), amniocytes and cord blood cells, as well as total mtDNA content in placenta samples. RESULTS: Load distribution was homogeneous at the sample level when average mutant load was low (<20%) or high (>80%) at the whole placenta level. By contrast, a marked heterogeneity was observed (up to 43%) in the intermediate range (20%-80%), the closer it was to 40%-50% the mutant load, the wider the distribution. Mutant loads were found to be similar in amniocytes and cord blood cells, at variance with placenta samples. mtDNA content correlated to mutant load in m.3243A>G placentas only. CONCLUSION: These data indicate that (1) mutant load determined from CVS has to be interpreted with caution for PND of some mtDNA disorders and should be associated with/substituted by a mutant load measurement on amniocytes; (2) the m.3243A>G mutation behaves differently from other mtDNA mutations with respect to the impact on mtDNA copy number, as previously shown in human preimplantation embryogenesis.


Assuntos
Doenças Mitocondriais/genética , Mutação , Placenta/fisiologia , Diagnóstico Pré-Natal/métodos , Líquido Amniótico , Amostra da Vilosidade Coriônica , Cordocentese , Variações do Número de Cópias de DNA , Feminino , Humanos , Gravidez
13.
Cytogenet Genome Res ; 151(3): 115-118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273668

RESUMO

Segmental aneusomies are usually associated with clinical consequences, but an increasing number of nonpathogenic cytogenetically visible as well as large cryptic chromosomal imbalances have been reported. Here, we report a 3.6-Mb Xq21.33 microduplication detected prenatally on a female fetus which was inherited from a phenotypically normal mother and grandfather. It is assumed that male patients harboring Xq or Xp duplication present with syndromic intellectual disability because of functional disomy of the corresponding genes. Female carriers are generally asymptomatic because of preferential inactivation of the abnormal X. In the present case, the 3.6-Mb-duplicated segment encompasses only 2 genes, DIAPH2 and RPL4A. Since the asymptomatic grandfather carries the duplication, we hypothesize that these genes are not dosage sensitive and/or involved in cognitive function. Our observation further illustrates that large copy number variants can be associated with a normal phenotype, especially where gene density is low. Reporting rare cases of large genomic imbalances without a phenotypic effect can be very helpful, especially for genetic counseling in the prenatal setting.


Assuntos
Duplicação Cromossômica/genética , Cromossomos Humanos X/genética , Transtornos dos Cromossomos Sexuais/diagnóstico , Adulto , Proteínas de Transporte/genética , Variações do Número de Cópias de DNA , Feminino , Forminas , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteínas Ribossômicas/genética , Transtornos dos Cromossomos Sexuais/genética , Inativação do Cromossomo X
16.
Prenat Diagn ; 39(5): 388-393, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30779209

RESUMO

OBJECTIVE: Fragile X syndrome (FXS), the most commonly inherited cause of intellectual disability, is caused by an expansion over 200 CGG repeats (full mutation) in the FMR1 gene. Intergenerational instability of an expanded FMR1 allele is linked to the carrier's gender (female), the CGG repeat size, and the number of AGG interspersions within the CGG repeat, making genetic counseling a complex task. The objective of our work was to emphasize the importance of combining haplotype analysis with FMR1-linked markers and CGG repeat sizing for prenatal diagnosis (PND) of FXS. METHODS: Two PNDs of FXS were performed using haplotype analysis and sizing of the FMR1 allele. RESULTS: We detected two cases of meiotic recombination at the FMR1 locus, ie, reciprocal double crossover or non-crossover, resulting in coexistence of the mutant maternal haplotype and the normal-sized maternal CGG repeat. CONCLUSION: These rare and unexpected cases (1/120 frequency in our experience) have to be kept in mind in PND of FXS since they prohibit using polymorphic marker haplotyping as the only tool to predict the fetus status.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Adulto , Algoritmos , Feminino , Humanos , Gravidez , Diagnóstico Pré-Natal
17.
J Bone Miner Res ; 39(3): 287-297, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477767

RESUMO

Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. By targeted gene sequencing analysis, we identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22 variant (c.443C>T or c.446G>A), although the spinal involvement appeared later and was less severe in patients with a recessive variant. Relatives harboring the c.146G>A variant at the heterozygous state were asymptomatic. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. RT-PCR and western blot analyses demonstrated that both dominant and recessive KIF22 variants do not affect KIF22 mRNA and protein expression in patient fibroblasts compared to controls. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations (CMD), related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts. Compared to controls, DMMB assay showed a significant decrease of total sulfated proteoglycan content in culture medium but not in the cell layer, and immunofluorescence demonstrated a strong reduction of staining for chondroitin sulfates but not for heparan sulfates, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis and place the lepto-SEMDJL in the CMD spectrum.


Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. We identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations, related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts and showed a significant decrease of total sulfated proteoglycan content in culture medium, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis.


Assuntos
Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Cinesinas/genética , Osteocondrodisplasias/genética , Família , Proteínas de Ligação a DNA
18.
Eur J Endocrinol ; 190(2): 151-164, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245004

RESUMO

OBJECTIVE: SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS: We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS: Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS: Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Resistência à Insulina , Insulinas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Insulin-Like I , Resistência à Insulina/genética , Ciliopatias/genética , Anormalidades Múltiplas/genética
19.
Eur J Hum Genet ; 31(11): 1337-1341, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37670079

RESUMO

Amelogenesis imperfecta (AI) is a group of rare genetic conditions characterized by quantitative and/or qualitative tooth enamel alterations. AI can manifest as an isolated trait or as part of a syndrome. Recently, five biallelic disease-causing variants in the RELT gene were identified in 7 families with autosomal recessive amelogenesis imperfecta (ARAI). RELT encodes an orphan receptor in the tumor necrosis factor (TNFR) superfamily expressed during tooth development, with unknown function. Here, we report one Brazilian and two French families with ARAI and a distinctive hypomineralized phenotype with hypoplastic enamel, post-eruptive enamel loss, and occlusal attrition. Using Next Generation Sequencing (NGS), four novel RELT variants were identified (c.120+1G>A, p.(?); c.120+1G>T, p.(?); c.193T>C, p.(Cys65Arg) and c.1260_1263dup, p.(Arg422Glyfs*5)). Our findings extend the knowledge of ARAI dental phenotypes and expand the disease-causing variants spectrum of the RELT gene.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Receptores do Fator de Necrose Tumoral/genética , Fenótipo , Brasil , Linhagem
20.
Front Genet ; 13: 875490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754802

RESUMO

Background: Singleton-Merten syndrome type 1 (SGMRT1) is a rare autosomal dominant disorder caused by IFIH1 variations with blood vessel calcifications, teeth anomalies, and bone defects. Aim: We aimed to summarize the oral findings in SGMRT1 through a systematic review of the literature and to describe the phenotype of a 10-year-old patient with SGMRT1 diagnosis. Results: A total of 20 patients were described in the literature, in nine articles. Eight IFIH1 mutations were described in 11 families. Delayed eruption, short roots, and premature loss of permanent teeth were the most described features (100%). Impacted teeth (89%) and carious lesions (67%) were also described. Our patient, a 10-year-old male with Singleton-Merten syndrome, presented numerous carious lesions, severe teeth malposition, especially in the anterior arch, and an oral hygiene deficiency with a 100% plaque index. The panoramic X-ray did not show any dental agenesis but revealed very short roots and a decrease in the jaw alveolar bone height. The whole-genome sequencing analysis revealed a heterozygous de novo variant in IFIH1 (NM_022168.4) c.2465G > A (p.Arg822Gln). Conclusion: Confused descriptions of oral features occurred in the literature between congenital findings and "acquired" pathology, especially carious lesions. The dental phenotype of these patients encompasses eruption anomalies (delayed eruption and impacted teeth) and lack of root edification, leading to premature loss of permanent teeth, and it may contribute to the diagnosis. An early diagnosis is essential to prevent teeth loss and to improve the quality of life of these patients. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022300025].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA