Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 81(15): 3171-3186.e8, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171297

RESUMO

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/metabolismo , Fibroblastos/virologia , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Metilação , Camundongos , Camundongos Knockout , Alcamidas Poli-Insaturadas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Receptores Imunológicos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Biol Chem ; 299(4): 103054, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822329

RESUMO

The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.


Assuntos
Enzimas Desubiquitinantes , Ferroptose , Histona-Lisina N-Metiltransferase , Enzimas de Conjugação de Ubiquitina , Enzimas Desubiquitinantes/metabolismo , Lisina/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Humanos , Histona-Lisina N-Metiltransferase/metabolismo
3.
EMBO J ; 39(11): e103285, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32301534

RESUMO

RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agregados Proteicos , Sirtuínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Sirtuínas/genética
4.
Development ; 146(20)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31533925

RESUMO

Protein arginine methyltransferase 5 (Prmt5), a type II arginine methyltransferase, symmetrically dimethylates arginine in nuclear and cytoplasmic proteins. Prmt5 is involved in a variety of cellular processes, including ribosome biogenesis, cellular differentiation, germ cell development and tumorigenesis. However, the mechanisms by which prmt5 influences cellular processes have remained unclear. Here, prmt5 loss in zebrafish led to the expression of an infertile male phenotype due to a reduction in germ cell number, an increase in germ cell apoptosis and the failure of gonads to differentiate into normal testes or ovaries. Moreover, arginine methylation of the germ cell-specific proteins Zili and Vasa, as well as histones H3 (H3R8me2s) and H4 (H4R3me2s), was reduced in the gonads of prmt5-null zebrafish. This resulted in the downregulation of several Piwi pathway proteins, including Zili, and Vasa. In addition, various genes related to meiosis, gonad development and sexual differentiation were dysregulated in the gonads of prmt5-null zebrafish. Our results revealed a novel mechanism associated with prmt5, i.e. prmt5 apparently controls germ cell development in vertebrates by catalyzing arginine methylation of the germline-specific proteins Zili and Vasa.


Assuntos
Células Germinativas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Arginina/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Feminino , Gônadas/citologia , Gônadas/metabolismo , Histonas/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Meiose/fisiologia , Metilação , Ovário/citologia , Ovário/metabolismo , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Testículo/citologia , Testículo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
J Immunol ; 204(11): 3019-3029, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321758

RESUMO

Transcriptional programs regulated by the NF-κB family are essential for the inflammatory response as well as for innate and adaptive immunity. NF-κB activation occurs via two major signaling pathways: the canonical and the noncanonical. The canonical NF-κB pathway responds to diverse immune stimulations and leads to rapid but transient activation. As a member of the canonical NF-κB family, p65 is thought to be a key regulator of viral infection. Because of the embryonic lethality of p65-null mice, the physiological role of p65 in the antiviral immune response is still unclear. In this study, we generated p65-null zebrafish, which were viable and indistinguishable from their wildtype (WT) siblings under normal conditions. However, p65-null zebrafish were more sensitive to spring viremia of carp virus infection than their WT siblings. Further assays indicated that proinflammatory and antiviral genes, including IFN, were downregulated in p65-null zebrafish after spring viremia of carp virus infection compared with their WT siblings. Our results thus suggested that p65 is required for the antiviral response, activating not only proinflammatory genes but also antiviral genes (including IFN).


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , NF-kappa B/metabolismo , Infecções por Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Peixe-Zebra/imunologia , eIF-2 Quinase/metabolismo , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Células Cultivadas , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Técnicas de Silenciamento de Genes , Imunidade Inata , Inflamação/genética , Interferons/genética , Camundongos , Transdução de Sinais , Peixe-Zebra/virologia , eIF-2 Quinase/genética
6.
J Biol Chem ; 295(48): 16299-16313, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32963106

RESUMO

Hypoxia-inducible factors are heterodimeric transcription factors that play a crucial role in a cell's ability to adapt to low oxygen. The von Hippel-Lindau tumor suppressor (pVHL) acts as a master regulator of HIF activity, and its targeting of prolyl hydroxylated HIF-α for proteasomal degradation under normoxia is thought to be a major mechanism for pVHL tumor suppression and cellular response to oxygen. Whether pVHL regulates other targets through a similar mechanism is largely unknown. Here, we identify TET2/3 as novel targets of pVHL. pVHL induces proteasomal degradation of TET2/3, resulting in reduced global 5-hydroxymethylcytosine levels. Conserved proline residues within the LAP/LAP-like motifs of these two proteins are hydroxylated by the prolyl hydroxylase enzymes (PHD2/EGLN1 and PHD3/EGLN3), which is prerequisite for pVHL-mediated degradation. Using zebrafish as a model, we determined that global 5-hydroxymethylcytosine levels are enhanced in vhl-null, egln1a/b-double-null, and egln3-null embryos. Therefore, we reveal a novel function for the PHD-pVHL pathway in regulating TET protein stability and activity. These data extend our understanding of how TET proteins are regulated and provide new insight into the mechanisms of pVHL in tumor suppression.


Assuntos
Metilação de DNA , DNA/metabolismo , Dioxigenases/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Motivos de Aminoácidos , Animais , DNA/genética , Dioxigenases/genética , Células HEK293 , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Nat Commun ; 15(1): 3533, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670937

RESUMO

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia , Imunidade Inata , Fator Regulador 3 de Interferon , Oxigênio , Prolina , Peixe-Zebra , Animais , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Fator Regulador 3 de Interferon/metabolismo , Hidroxilação , Humanos , Prolina/metabolismo , Camundongos , Oxigênio/metabolismo , Células HEK293 , Fosforilação , Camundongos Knockout , Transdução de Sinais , Camundongos Endogâmicos C57BL
9.
Cell Rep ; 39(10): 110920, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675783

RESUMO

Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Infecções por Vírus de RNA , Proteases Específicas de Ubiquitina , Animais , Proteína DEAD-box 58/metabolismo , Infecções por Vírus de DNA/imunologia , Vírus de DNA , Enzimas Desubiquitinantes , Helicase IFIH1 Induzida por Interferon/metabolismo , Camundongos , Nucleotidiltransferases , Infecções por Vírus de RNA/imunologia , Vírus de RNA , RNA Viral/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Peixe-Zebra/metabolismo
10.
Cell Death Dis ; 13(6): 560, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732631

RESUMO

As a main regulator of cellular responses to hypoxia, the protein stability of hypoxia-inducible factor (HIF)-1α is strictly controlled by oxygen tension dependent of PHDs-catalyzed protein hydroxylation and pVHL complex-mediated proteasomal degradation. Whether HIF-1α protein stability as well as its activity can be further regulated under hypoxia is not well understood. In this study, we found that OTUB1 augments hypoxia signaling independent of PHDs/VHL and FIH. OTUB1 binds to HIF-1α and depletion of OTUB1 reduces endogenous HIF-1α protein under hypoxia. In addition, OTUB1 inhibits K48-linked polyubiquitination of HIF-1α via its non-canonical inhibition of ubiquitination activity. Furthermore, OTUB1 promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation. These findings define a novel regulation of HIF-1α under hypoxia and demonstrate that OTUB1-mediated HIF-1α stabilization positively regulates HIF-1α transcriptional activity and benefits cellular hypoxia adaptation.


Assuntos
Hipóxia Celular , Enzimas Desubiquitinantes , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transdução de Sinais , Hipóxia Celular/fisiologia , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ubiquitinação
11.
Cell Death Differ ; 29(4): 722-736, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34642466

RESUMO

p53 is a classic tumor suppressor that functions in maintaining genome stability by inducing either cell arrest for damage repair or cell apoptosis to eliminate damaged cells in response to different types of stress. Posttranslational modifications (PTMs) of p53 are thought to be the most effective way for modulating of p53 activation. Here, we show that SIRT5 interacts with p53 and suppresses its transcriptional activity. Using mass spectrometric analysis, we identify a previously unknown PTM of p53, namely, succinylation of p53 at Lysine 120 (K120). SIRT5 mediates desuccinylation of p53 at K120, resulting in the suppression of p53 activation. Moreover, using double knockout mice (p53-/-Sirt5-/-), we validate that the suppression of p53 target gene expression and cell apoptosis upon DNA damage is dependent on cellular p53. Our study identifies a novel PTM of p53 that regulates its activation as well as reveals a new target of SIRT5 acting as a desuccinylase.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Sirtuínas , Proteína Supressora de Tumor p53 , Animais , Dano ao DNA , Lisina/metabolismo , Camundongos , Camundongos Knockout , Sirtuínas/genética , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA