Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Virol ; : e0050424, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899934

RESUMO

Animal models of authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require operation in biosafety level 3 (BSL-3) containment. In the present study, we established a mouse model employing a single-cycle infectious virus replicon particle (VRP) system of SARS-CoV-2 that can be safely handled in BSL-2 laboratories. The VRP [ΔS-VRP(G)-Luc] contains a SARS-CoV-2 genome in which the spike gene was replaced by a firefly luciferase (Fluc) reporter gene (Rep-Luci), and incorporates the vesicular stomatitis virus glycoprotein on the surface. Intranasal inoculation of ΔS-VRP(G)-Luc can successfully transduce the Rep-Luci genome into mouse lungs, initiating self-replication of Rep-Luci and, accordingly, inducing acute lung injury mimicking the authentic SARS-CoV-2 pathology. In addition, the reporter Fluc expression can be monitored using a bioluminescence imaging approach, allowing a rapid and convenient determination of viral replication in ΔS-VRP(G)-Luc-infected mouse lungs. Upon treatment with an approved anti-SARS-CoV-2 drug, VV116, the viral replication in infected mouse lungs was significantly reduced, suggesting that the animal model is feasible for antiviral evaluation. In summary, we have developed a BSL-2-compliant mouse model of SARS-CoV-2 infection, providing an advanced approach to study aspects of the viral pathogenesis, viral-host interactions, as well as the efficacy of antiviral therapeutics in the future.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and pathogenic in humans; thus, research on authentic SARS-CoV-2 has been restricted to biosafety level 3 (BSL-3) laboratories. However, due to the scarcity of BSL-3 facilities and trained personnel, the participation of a broad scientific community in SARS-CoV-2 research had been greatly limited, hindering the advancement of our understanding on the basic virology as well as the urgently necessitated drug development. Previously, our colleagues Jin et al. had generated a SARS-CoV-2 replicon by replacing the essential spike gene in the viral genome with a Fluc reporter (Rep-Luci), which can be safely operated under BSL-2 conditions. By incorporating the Rep-Luci into viral replicon particles carrying vesicular stomatitis virus glycoprotein on their surface, and via intranasal inoculation, we successfully transduced the Rep-Luci into mouse lungs, developing a mouse model mimicking SARS-CoV-2 infection. Our model can serve as a useful platform for SARS-CoV-2 pathological studies and antiviral evaluation under BSL2 containment.

2.
J Am Chem Soc ; 146(9): 5894-5900, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408177

RESUMO

Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.


Assuntos
COVID-19 , Nanopartículas Metálicas , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/metabolismo , Anticorpos Antivirais/metabolismo , Ouro/farmacologia , Ligação Proteica , DNA/metabolismo , Anticorpos Neutralizantes/química
3.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843369

RESUMO

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Assuntos
Vírus da Influenza A , Influenza Humana , Pulmão , Receptores de Superfície Celular , Animais , Humanos , Proteínas de Transporte/metabolismo , Glicoconjugados/metabolismo , Vírus da Influenza A/metabolismo , Pulmão/virologia , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Açúcares/metabolismo , Influenza Aviária/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo
4.
PLoS Pathog ; 18(8): e1010756, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926068

RESUMO

Reporter viruses provide powerful tools for both basic and applied virology studies, however, the creation and exploitation of reporter influenza A viruses (IAVs) have been hindered by the limited tolerance of the segmented genome to exogenous modifications. Interestingly, our previous study has demonstrated the underlying mechanism that foreign insertions reduce the replication/transcription capacity of the modified segment, impairing the delicate balance among the multiple segments during IAV infection. In the present study, we developed a "balance compensation" strategy by incorporating additional compensatory mutations during initial construction of recombinant IAVs to expand the tolerance of IAV genome. As a proof of concept, promoter-enhancing mutations were introduced within the modified segment to rectify the segments imbalance of a reporter influenza PR8-NS-Gluc virus, while directed optimization of the recombinant IAV was successfully achieved. Further, we generated recombinant IAVs expressing a much larger firefly luciferase (Fluc) by coupling with a much stronger compensatory enhancement, and established robust Fluc-based live-imaging mouse models of IAV infection. Our strategy feasibly expands the tolerance for foreign gene insertions in the segmented IAV genome, which opens up better opportunities to develop more versatile reporter IAVs as well as live attenuated influenza virus-based vaccines for other important human pathogens.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Camundongos , Replicação Viral/genética
5.
J Med Virol ; 96(1): e29369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180269

RESUMO

Broad-spectrum antivirals (BSAs) have the advantageous property of being effective against a wide range of viruses with a single drug, offering a promising therapeutic solution for the largely unmet need in treating both existing and emerging viral infections. In this review, we summarize the current strategies for the development of novel BSAs, focusing on either targeting the commonalities during the replication of multiple viruses or the systemic immunity of humans. In comparison to BSAs that target viral replication, these immuno-modulatory agents possess an expanded spectrum of antiviral activity. However, antiviral immunity is a double-edged sword, and maintaining immune homeostasis ultimately dictates the health status of hosts during viral infections. Therefore, establishing an ideal goal for immuno-modulation in antiviral interventions is crucial. Herein we propose a bionic approach for immuno-modulation inspired by mimicking bats, which possess a more robust immune system for combating viral invasions, compared to humans. In addition, we discuss an empirical approach to treat diverse viral infections using traditional Chinese medicines (TCMs), mainly through bidirectional immuno-modulation to restore the disrupted homeostasis. Advancing our understanding of both the immune system of bats and the mechanisms underlying antiviral TCMs will significantly contribute to the future development of novel BSAs.


Assuntos
Antivirais , Viroses , Animais , Humanos , Antivirais/farmacologia , Quirópteros/imunologia , Quirópteros/virologia , Homeostase , Medicina Tradicional Chinesa , Viroses/tratamento farmacológico , Desenvolvimento de Medicamentos
6.
J Med Virol ; 96(3): e29517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476091

RESUMO

Herbal medicines (HMs) are one of the main sources for the development of lead antiviral compounds. However, due to the complex composition of HMs, the screening of active compounds within these is inefficient and requires a significant time investment. We report a novel and efficient virus-based screening method for antiviral active compounds in HMs. This method involves the centrifugal ultrafiltration of viruses, known as the virus-based affinity ultrafiltration method (VAUM). This method is suitable to identify virus specific active compounds from complex matrices such as HMs. The effectiveness of the VAUM was evaluated using influenza A virus (IAV) H1N1. Using this method, four compounds that bind to the surface protein of H1N1 were identified from dried fruits of Terminalia chebula (TC). Through competitive inhibition assays, the influenza surface protein, neuraminidase (NA), was identified as the target protein of these four TC-derived compounds. Three compounds were identified by high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS), and their anti-H1N1 activities were verified by examining the cytopathic effect (CPE) and by performing a virus yield reduction assay. Further mechanistic studies demonstrated that these three compounds directly bind to NA and inhibit its activity. In summary, we describe here a VAUM that we designed, one that can be used to accurately screen antiviral active compounds in HMs and also help improve the efficiency of screening antiviral drugs found in natural products.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Plantas Medicinais , Humanos , Ultrafiltração , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Proteínas de Membrana
7.
Nat Chem Biol ; 18(3): 342-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35046611

RESUMO

Vaccine hesitancy and emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) escaping vaccine-induced immune responses highlight the urgency for new COVID-19 therapeutics. Engineered angiotensin-converting enzyme 2 (ACE2) proteins with augmented binding affinities for SARS-CoV-2 spike (S) protein may prove to be especially efficacious against multiple variants. Using molecular dynamics simulations and functional assays, we show that three amino acid substitutions in an engineered soluble ACE2 protein markedly augmented the affinity for the S protein of the SARS-CoV-2 WA-1/2020 isolate and multiple VOCs: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). In humanized K18-hACE2 mice infected with the SARS-CoV-2 WA-1/2020 or P.1 variant, prophylactic and therapeutic injections of soluble ACE22.v2.4-IgG1 prevented lung vascular injury and edema formation, essential features of CoV-2-induced SARS, and above all improved survival. These studies demonstrate broad efficacy in vivo of an engineered ACE2 decoy against SARS-CoV-2 variants in mice and point to its therapeutic potential.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19/prevenção & controle , Engenharia de Proteínas , SARS-CoV-2 , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antivirais , Descoberta de Drogas , Humanos , Lesão Pulmonar , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Síndrome do Desconforto Respiratório , Síndrome Respiratória Aguda Grave
8.
J Virol ; 96(3): e0183721, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851142

RESUMO

Research activities with infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are currently permitted only under biosafety level 3 (BSL3) containment. Here, we report the development of a single-cycle infectious SARS-CoV-2 virus replicon particle (VRP) system with a luciferase and green fluorescent protein (GFP) dual reporter that can be safely handled in BSL2 laboratories to study SARS-CoV-2 biology. The spike (S) gene of SARS-CoV-2 encodes the envelope glycoprotein, which is essential for mediating infection of new host cells. Through deletion and replacement of this essential S gene with a luciferase and GFP dual reporter, we have generated a conditional SARS-CoV-2 mutant (ΔS-VRP) that produces infectious particles only in cells expressing a viral envelope glycoprotein of choice. Interestingly, we observed more efficient production of infectious particles in cells expressing vesicular stomatitis virus (VSV) glycoprotein G [ΔS-VRP(G)] than in cells expressing other viral glycoproteins, including S. We confirmed that infection from ΔS-VRP(G) is limited to a single round and can be neutralized by anti-VSV serum. In our studies with ΔS-VRP(G), we observed robust expression of both luciferase and GFP reporters in various human and murine cell types, demonstrating that a broad variety of cells can support intracellular replication of SARS-CoV-2. In addition, treatment of ΔS-VRP(G)-infected cells with either of the anti-CoV drugs remdesivir (nucleoside analog) and GC376 (CoV 3CL protease inhibitor) resulted in a robust decrease in both luciferase and GFP expression in a drug dose- and cell-type-dependent manner. Taken together, our findings show that we have developed a single-cycle infectious SARS-CoV-2 VRP system that serves as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high-throughput screening of antiviral drugs under BSL2 containment. IMPORTANCE Due to the highly contagious nature of SARS-CoV-2 and the lack of immunity in the human population, research on SARS-CoV-2 has been restricted to biosafety level 3 laboratories. This has greatly limited participation of the broader scientific community in SARS-CoV-2 research and thus has hindered the development of vaccines and antiviral drugs. By deleting the essential spike gene in the viral genome, we have developed a conditional mutant of SARS-CoV-2 with luciferase and fluorescent reporters, which can be safely used under biosafety level 2 conditions. Our single-cycle infectious SARS-CoV-2 virus replicon system can serve as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high-throughput screening of antiviral drugs under BSL2 containment.


Assuntos
Engenharia Genética , Recombinação Genética , Replicon , SARS-CoV-2/genética , COVID-19/virologia , Técnicas de Cultura de Células , Linhagem Celular , Contenção de Riscos Biológicos/normas , Genes Reporter , Humanos , Laboratórios/normas , Proteínas Virais/genética , Replicação Viral
9.
PLoS Pathog ; 17(6): e1009662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097709

RESUMO

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old World arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA's activity could be a target for anti-viral therapies.


Assuntos
Endocitose , Vírus de RNA/imunologia , Receptores Imunológicos/fisiologia , Internalização do Vírus , Animais , Antivirais/farmacologia , Linhagem Celular , Membrana Celular/virologia , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Integrinas/imunologia , Interleucina-4/farmacologia , Camundongos , Camundongos Knockout , Domínios Proteicos , Receptores Imunológicos/genética , Células Vero
10.
PLoS Pathog ; 17(2): e1009312, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539432

RESUMO

Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Chlorocebus aethiops , Ebolavirus/fisiologia , Glicoproteínas/genética , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/virologia , Células Vero , Proteínas do Envelope Viral/genética
11.
J Med Virol ; 95(11): e29181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930075

RESUMO

Influenza virus infection is currently one of the most prevalent and transmissible diseases in the world causing local outbreaks every year. It has the potential to cause devastating global pandemics as well. The development of anti-influenza drugs possessing novel mechanisms of action is urgently needed to control the spread of influenza infections; thus, drugs that inhibit influenza virus entry into target cells are emerging as a hot research topic. In addition to discussing the biological significance of hemagglutinin in viral replication, this article provides recent updates on the natural products, small molecules, proteins, peptides, and neutralizing antibody-like proteins that have anti-influenza potency.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Influenza Humana/tratamento farmacológico , Internalização do Vírus , Antivirais/uso terapêutico , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo
12.
J Med Virol ; 95(1): e28345, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424458

RESUMO

The balance of the segmented genome derived from naturally occurring influenza A viruses (IAVs) is delicate and vulnerable to foreign insertions, thus most reporter IAVs up to date are generated using the backbone of the laboratory-adapted strains. In this study, we constructed a reporter influenza A/H3N2 virus (A/NY-HiBiT) which was derived from a clinical isolate, by placing a minimized HiBiT tag to the N-terminus of the viral nuclear-export protein (NEP). Here, we show that this 11-amino acid HiBiT tag did not adversely impact the viral genome balance, and the recombinant A/NY-HiBiT virus maintains its relative stability. Moreover, the replication profile of the HiBiT-tagged virus can be measured by a simple Nano-Glo assay, providing a robust high-throughput screening (THS) platform. We used this platform to evaluate a collection of the pre-purified fractions which were derived from rare Chinese medicinal materials, and we identified three fractions, including wild Trametes robiniophila (50% methanol fraction), Ganoderma (water fraction), and wild Phellinus igniarius (ethyl acetate fraction), as potent anti-IAV actives. Our results demonstrate that this IAV reporter can be used as a powerful HTS platform for antiviral development.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Trametes/metabolismo , Influenza Humana/genética , Proteínas Virais/genética , Replicação Viral
13.
J Med Virol ; 95(3): e28609, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840402

RESUMO

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a major public health threat worldwide and emphasizes an urgent need for effective therapeutics. Recently, Ordonez et al. identified sulforaphane (SFN) as a novel coronavirus inhibitor both in vitro and in mice, but the mechanism of action remains elusive. In this study, we independently discovered SFN for its inhibitory effect against SARS-CoV-2 using a target-based screening approach, identifying the viral 3-chymotrypsin-like protease (3CLpro ) as a target of SFN. Mechanistically, SFN inhibits 3CLpro in a reversible, mixed-type manner. Moreover, enzymatic kinetics studies reveal that SFN is a slow-binding inhibitor, following a two-step interaction. Initially, an encounter complex forms by specific binding of SFN to the active pocket of 3CLpro ; subsequently, the isothiocyanate group of SFN as "warhead" reacts covalently to the catalytic cysteine in a slower velocity, stabilizing the SFN-3CLpro complex. Our study has identified a new lead of the covalent 3CLpro inhibitors which has potential to be developed as a therapeutic agent to treat SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Quimases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Isotiocianatos/farmacologia , Antivirais/uso terapêutico
14.
J Med Virol ; 95(8): e29059, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635463

RESUMO

Respiratory syncytial virus (RSV) causes lower respiratory tract diseases and bronchiolitis in children and elderly individuals. There are no effective drugs currently available to treat RSV infection. In this study, we report that Licochalcone A (LCA) can inhibit RSV replication and mitigate RSV-induced cell damage in vitro, and that LCA exerts a protective effect by reducing the viral titer and inflammation in the lungs of infected mice in vivo. We suggest that the mechanism of action occurs through pathways of antioxidant stress and inflammation. Further mechanistic results demonstrate that LCA can induce nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus, activate heme oxygenase 1 (HO-1), and inhibit reactive oxygen species-induced oxidative stress. LCA also works to reverse the decrease in I-kappa-B-alpha (IкBα) levels caused by RSV, which in turn inhibits inflammation through the associated nuclear factor kappa B and tumor necrosis factor-α signaling pathways. The combined action of the two cross-talking pathways protects hosts from RSV-induced damage. To conclude, our study is the first of its kind to establish evidence of LCA as a viable treatment for RSV infection.


Assuntos
Chalconas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Chalconas/farmacologia , Chalconas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação
15.
J Med Virol ; 95(7): e28968, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489704

RESUMO

Influenza viruses pose a significant threat to human health worldwide due to seasonal epidemics and occasional global pandemics. These viruses can cause severe upper respiratory tract infections that contribute to high morbidity and mortality rates. The emergence of drug-resistant influenza viruses has created the need for the development of novel broad-spectrum antivirals. Here, we present a novel anti-influenza agent with new targets and mechanisms of action to address this problem. Our findings led to the discovery of a novel influenza virus inhibitor, a ligustrazine derivative known as A9. We have found that it exhibits broad-spectrum antiviral properties against influenza A and B viruses (IAV and IBV, respectively), including oseltamivir-resistant strain. Through multiple bioassays such as time-of-addition assay, indirect immunofluorescence assay, and nuclear-cytoplasmic fractionation assay, we demonstrated that A9 inhibits the nuclear export of the viral ribonucleoprotein (vRNP). Furthermore, escape mutant analyses and affinity studies determined by surface plasmon resonance indicated that A9 specifically targets the nucleoprotein. In addition, four chalcone derivatives developed from A9 (B14, B29, B31, and B32), were found to effectively inhibit the replication of influenza virus through the same mechanism of action. In this manuscript we highlight A9 and its four derivatives as potential leads for the treatment of IAV and IBV infections, and their unique and novel mechanism of action probable benefit the field of anti-influenza drug discovery.


Assuntos
Chalcona , Chalconas , Influenza Humana , Orthomyxoviridae , Humanos , Nucleoproteínas , Transporte Ativo do Núcleo Celular , Antivirais
16.
J Am Chem Soc ; 144(4): 1498-1502, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34928591

RESUMO

Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Ácidos Nucleicos Imobilizados/química , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Humanos , Limite de Detecção , Microscopia/métodos , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , SARS-CoV-2/química , Saliva/virologia , Glicoproteína da Espícula de Coronavírus/química
17.
J Med Virol ; 94(7): 3263-3269, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332563

RESUMO

The ability of viruses in the Filoviridae family (Ebola virus [EBOV] and Marburg virus [MARV]) to cause severe human disease and their pandemic potential makes all emerging filoviral pathogens a concern to humanity. Menglà virus (MLAV) belonging to the new genus Dianlovirus was recently discovered in the liver of bats from Menglà County, Yunnan Province, China. The capacity of MLAV to utilize NPC1 as an endosomal receptor, to transduce mammalian cells, and suppress IFN response suggests that this potential pathogen could cause human illness. Despite great effort by researchers, only the viral genome has been recovered and isolation of live MLAV had been unsuccessful. Here using a pseudovirus model baring the MLAV glycoprotein (GP), we studied the protease dependence of the MLAV-GP, and the ability of small molecules and antibodies to inhibit MLAV viral entry. Like EBOV and MARV, the MLAV-GP requires proteolytic processing but like MARV it does not depend on cathepsin B activity for viral entry. Furthermore, previously discovered small-molecule inhibitors and antibodies are MLAV inhibitors and show the possibility of developing these inhibitors as broad-spectrum filovirus antivirals. Overall, the findings in the study confirmed that MLAV viral entry is biologically distinct but has similarities to MARV.


Assuntos
Ebolavirus , Marburgvirus , Animais , China , Ebolavirus/genética , Glicoproteínas/genética , Humanos , Mamíferos , Marburgvirus/genética , Internalização do Vírus
18.
Adv Exp Med Biol ; 1366: 155-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412140

RESUMO

Ebola virus (EBOV) is one of the most deadliest agents already known, causing periodic epidemic of a severe hemorrhagic fever disease in Africa. Although two monoclonal antibody (mAb) drugs have recently received approval in the USA, additional therapeutics are still needed to combat potential outbreaks of resistance variants and other closely related ebola viruses. In this chapter, we describe the current understanding of the EBOV entry process and summarize the approaches, strategies, and advances in discovery and development of EBOV entry inhibitors, including therapeutic antibodies, peptides, small molecules, natural products, and other chemical structures.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Monoclonais/uso terapêutico , Surtos de Doenças , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Internalização do Vírus
19.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269770

RESUMO

Ebola virus disease (EVD), a disease caused by infection with Ebola virus (EBOV), is characterized by hemorrhagic fever and a high case fatality rate. With limited options for the treatment of EVD, anti-Ebola viral therapeutics need to be urgently developed. In this study, over 500 extracts of medicinal plants collected in the Lingnan region were tested against infection with Ebola-virus-pseudotyped particles (EBOVpp), leading to the discovery of Maesa perlarius as an anti-EBOV plant lead. The methanol extract (MPBE) of the stems of this plant showed an inhibitory effect against EBOVpp, with an IC50 value of 0.52 µg/mL, which was confirmed by testing the extract against infectious EBOV in a biosafety level 4 laboratory. The bioassay-guided fractionation of MPBE resulted in three proanthocyanidins (procyanidin B2 (1), procyanidin C1 (2), and epicatechin-(4ß→8)-epicatechin-(4ß→8)-epicatechin-(4ß→8)-epicatechin (3)), along with two flavan-3-ols ((+)-catechin (4) and (-)-epicatechin (5)). The IC50 values of the compounds against pseudovirion-bearing EBOV-GP ranged from 0.83 to 36.0 µM, with 1 as the most potent inhibitor. The anti-EBOV activities of five synthetic derivatives together with six commercially available analogues, including EGCG ((-)-epigallocatechin-3-O-gallate (8)), were further investigated. Molecular docking analysis and binding affinity measurement suggested the EBOV glycoprotein could be a potential molecular target for 1 and its related compounds.


Assuntos
Catequina , Ebolavirus , Inibidores da Fusão de HIV , Doença pelo Vírus Ebola , Maesa , Catequina/química , Catequina/farmacologia , Inibidores da Fusão de HIV/farmacologia , Doença pelo Vírus Ebola/tratamento farmacológico , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
20.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630575

RESUMO

Three isopimarane diterpenes [fladins B (1), C (2), and D (3)] were isolated from the twigs and leaves of Chinese folk medicine, Isodon flavidus. The chemical structures were determined by the analysis of the comprehensive spectroscopic data, and the absolute configuration was confirmed by X-ray crystallographic analysis. The structures of 1-3 were formed from isopimaranes through the rearrangement of ring A by the bond break at C-3 and C-4 to form a new δ-lactone ring system between C-3 and C-9. This structure type represents the first discovery of a natural isopimarane diterpene with an unusual lactone moiety at C-9 and C-10. In the crystal of 1, molecules are linked to each other by intermolecular O-H···O bonds, forming chains along the b axis. Compounds 1-3 were evaluated for their bioactivities against different diseases. None of these compounds displayed cytotoxic activities against HCT116 and A549 cancer cell lines, antifungal activities against Trichophyton rubrum and T. mentagrophytes, or antiviral activities against HIV entry at 20 µg/mL (62.9-66.7) µM. Compounds 1 and 3 did not show antiviral activities against Ebola entry at 20 µg/mL either; only 2 was found to show an 81% inhibitory effect against Ebola entry activity at 20 µg/mL (66.7 µM). The bioactivity evidence suggested that this type of compound could be a valuable antiviral lead for further structure modification to improve the antiviral potential.


Assuntos
Diterpenos , Doença pelo Vírus Ebola , Isodon , Abietanos/análise , Abietanos/farmacologia , Antivirais/análise , Diterpenos/química , Isodon/química , Lactonas/análise , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA