Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(7): 457-468, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738316

RESUMO

Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises, varying in magnitude and type of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a 2-wk survival training course (ST, n = 36), a 4-day cross-country ski march arctic training (AT, n = 24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n = 26). Log2-fold changes of greater than ±1 in 191, 121, and 64 metabolites were identified in the ST, AT, and CED datasets, respectively. Most metabolite changes were within the lipid (57-63%) and amino acid metabolism (18-19%) pathways and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in the acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in the diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis, and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage, and suppression of anabolic signaling that may characterize the unique physiological demands of military training.NEW & NOTEWORTHY The extent to which metabolomic responses are shared across diverse military training environments is unknown. Global metabolomic profiling across three distinct military training exercises identified shared metabolic responses with the largest changes observed for metabolites related to fatty acids, acylcarnitines, ketone metabolism, and oxidative stress. These changes also correlated with alterations in markers of tissue damage, inflammation, and anabolic signaling and comprise a potential common metabolomic signature underlying the unique physiological demands of military training.


Assuntos
Metaboloma , Metabolômica , Militares , Humanos , Metabolômica/métodos , Masculino , Adulto Jovem , Estresse Fisiológico/fisiologia , Adulto , Exercício Físico/fisiologia , Carnitina/análogos & derivados , Carnitina/sangue
2.
Metabolomics ; 18(12): 100, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450940

RESUMO

INTRODUCTION: Testosterone administration attenuates reductions in total body mass and lean mass during severe energy deficit (SED). OBJECTIVES: This study examined the effects of testosterone administration on the serum metabolome during SED. METHODS: In a double-blind, placebo-controlled clinical trial, non-obese men were randomized to receive 200-mg testosterone enanthate/wk (TEST) (n = 24) or placebo (PLA) (n = 26) during a 28-d inpatient, severe exercise- and diet-induced energy deficit. This study consisted of three consecutive phases. Participants were free-living and provided a eucaloric diet for 14-d during Phase 1. During Phase 2, participants were admitted to an inpatient unit, randomized to receive testosterone or placebo, and underwent SED for 28-d. During Phase 3, participants returned to their pre-study diet and physical activity habits. Untargeted metabolite profiling was conducted on serum samples collected during each phase. Body composition was measured using dual-energy X-ray absorptiometry after 11-d of Phase 1 and after 25-d of Phase 2 to determine changes in fat and lean mass. RESULTS: TEST had higher (Benjamini-Hochberg adjusted, q < 0.05) androgenic steroid and acylcarnitine, and lower (q < 0.05) amino acid metabolites after SED compared to PLA. Metabolomic differences were reversed by Phase 3. Changes in lean mass were associated (Bonferroni-adjusted, p < 0.05) with changes in androgenic steroid metabolites (r = 0.42-0.70), acylcarnitines (r = 0.37-0.44), and amino acid metabolites (r = - 0.36-- 0.37). Changes in fat mass were associated (p < 0.05) with changes in acylcarnitines (r = - 0.46-- 0.49) and changes in urea cycle metabolites (r = 0.60-0.62). CONCLUSION: Testosterone administration altered androgenic steroid, acylcarnitine, and amino acid metabolites, which were associated with changes in body composition during SED.


Assuntos
Metabolômica , Testosterona , Masculino , Humanos , Aminoácidos , Poliésteres
3.
J Nutr ; 152(11): 2343-2357, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774101

RESUMO

BACKGROUND: Food processing alters diet digestibility and composition, thereby influencing interactions between host biology, diet, and the gut microbiota. The fecal metabolome offers insight into those relations by providing a readout of diet-microbiota interactions impacting host health. OBJECTIVES: The aims were to determine the effects of consuming a processed diet on the fecal metabolome and to explore relations between changes in the fecal metabolome with fecal microbiota composition and gastrointestinal health markers. METHODS: This was a secondary analysis of a randomized controlled trial wherein healthy adults [94% male; 18-61 y; BMI (kg/m2): 26 ± 3] consumed their usual diet [control (CON), n = 27] or a Meal, Ready-to-EatTM (Ameriqual Packaging) military ration diet composed of processed, shelf-stable, ready-to-eat items for 21 d (MRE; n = 27). Fecal metabolite profiles, fecal microbiota composition, biomarkers of intestinal barrier function, and gastrointestinal symptoms were measured before and after the intervention. Between-group differences and associations were assessed using nonparametric t tests, partial least-squares discriminant analysis, correlation, and redundancy analysis. RESULTS: Fecal concentrations of multiple dipeptides [Mann-Whitney effect size (ES) = 0.27-0.50] and long-chain SFAs (ES = 0.35-0.58) increased, whereas plant-derived compounds (ES = 0.31-0.60) decreased in MRE versus CON (P < 0.05; q < 0.20). Changes in dipeptides correlated positively with changes in fecal concentrations of Maillard-reaction products (ρ = 0.29-0.70; P < 0.05) and inversely with changes in serum prealbumin (ρ = -0.30 to -0.48; P ≤ 0.03). Multiple bile acids, coffee and caffeine metabolites, and plant-derived compounds were associated with both fecal microbiota composition and gastrointestinal health markers, with changes in fecal microbiota composition explaining 26% of the variability within changes in gastrointestinal health-associated fecal metabolites (P = 0.001). CONCLUSIONS: Changes in the fecal metabolomes of adults consuming a Meal, Ready-to-EatTM diet implicate interactions between diet composition, diet digestibility, and the gut microbiota as contributing to variability within gastrointestinal responses to the diet. Findings underscore the need to consider both food processing and nutrient composition when investigating the impact of diet-gut microbiota interactions on health outcomes. This trial was registered at www. CLINICALTRIALS: gov as NCT02423551.


Assuntos
Microbioma Gastrointestinal , Adulto , Humanos , Dieta , Trato Gastrointestinal , Fezes/química , Metaboloma , Compostos Fitoquímicos
4.
Diabetes Obes Metab ; 24(6): 1000-1009, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112774

RESUMO

AIMS: To examine whether changes in objectively measured physical activity (PA) are associated with weight loss and changes in body composition and fat distribution in response to weight-loss diet interventions. METHODS: This study included 535 participants with overweight/ obesity, who were randomly assigned to four weight-loss diets varying in macronutrients. PA was measured objectively with pedometers, and body composition and fat distribution were measured using dual-energy X-ray absorptiometry and computed tomography scans at baseline, 6 months and 24 months. RESULTS: From baseline to 6 months, when the maximum weight loss was achieved, each 1000-steps/d increment in PA was associated with a greater reduction in body weight (ß[SE] = -0.48[0.11]) and waist circumference (ß[SE] = -0.49[0.12]). Similar inverse associations were found in changes in body composition and fat distribution (P < 0.05 and false discovery rate qvalue < 0.1 for all). The trajectory of the above adiposity measures across the 24-month intervention period differed between the patterns of PA change. Participants with the largest increase in PA maintained their weight loss from 6 months to 24 months, while those with a smaller increase in PA regained their weight. In addition, dietary fat or protein intake significantly modified the associations between changes in PA and changes in body weight and waist circumference over 24 months (P∆PA*diet < 0.05). CONCLUSIONS: Changes in objectively measured PA were inversely related to changes in body weight, body composition and fat distribution in response to weight-loss diets, and such associations were more evident in people on a high-fat or average-protein diet compared with a low-fat or high-protein diet.


Assuntos
Actigrafia , Redução de Peso , Composição Corporal , Dieta Redutora , Exercício Físico , Humanos , Obesidade/metabolismo
5.
Neuroimage ; 243: 118496, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425226

RESUMO

BACKGROUND: Clinical administration of testosterone is widely used due to a variety of claimed physical and cognitive benefits. Testosterone administration is associated with enhanced brain and cognitive function, as well as mood, in energy-balanced males, although such relationships are controversial. However, the effects of testosterone administration on the brains of energy-deficient males, whose testosterone concentrations are likely to be well below normal, have not been investigated. METHODS: This study collected functional magnetic resonance imaging (fMRI) data from 50 non-obese young men before (PRE) and shortly after (POST) 28 days of severe exercise-and-diet-induced energy deficit during which testosterone (200 mg testosterone enanthate per week in sesame oil, TEST) or placebo (sesame seed oil only, PLA) were administered. Scans were also collected after a post-energy-deficit weight regain period (REC). Participants completed five fMRI tasks that assessed aspects of: 1) executive function (Attention Network Task or ANT; Multi-Source Interference Task or MSIT; AXE Continuous Processing Task or AXCPT); 2) aggressive behavior (Provoked Aggression Task or AGG); and 3) latent emotion processing (Emotional Face Processing or EMO). RESULTS: Changes over time in task-related fMRI activation in a priori defined task-critical brain regions during performance of 2 out of 5 tasks were significantly different between TEST and PLA, with TEST showing greater levels of activation during ANT in the right anterior cingulate gyrus at POST and during MSIT in several brain regions at REC. Changes over time in objective task performance were not statistically significant; testosterone-treated volunteers had greater self-reported anger during AGG at POST. CONCLUSIONS: Testosterone administration can alter some aspects of brain function during severe energy deficit and increase levels of anger.


Assuntos
Agressão/fisiologia , Emoções/fisiologia , Ingestão de Energia/fisiologia , Função Executiva/fisiologia , Imageamento por Ressonância Magnética , Testosterona/farmacologia , Adulto , Encéfalo/diagnóstico por imagem , Exercício Físico/fisiologia , Humanos , Masculino , Adulto Jovem
6.
Am J Physiol Endocrinol Metab ; 319(4): E678-E688, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776828

RESUMO

Testosterone supplementation during energy deficit promotes whole body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before, 1 h, and 6 h after exercise and a mixed meal (40 g protein, 1 h postexercise) following 14 days of weight maintenance (WM) and 28 days of an exercise- and diet-induced 55% energy deficit (ED) in 50 physically active nonobese men treated with 200 mg testosterone enanthate/wk (TEST) or placebo (PLA) during the ED. Participants (n = 10/group) exhibiting substantial increases in leg lean mass and total testosterone (TEST) were compared with those exhibiting decreases in both of these measures (PLA). Resting androgen receptor (AR) protein content was higher and fibroblast growth factor-inducible 14 (Fn14), IL-6 receptor (IL-6R), and muscle ring-finger protein-1 gene expression was lower in TEST vs. PLA during ED relative to WM (P < 0.05). Changes in inflammatory, myogenic, and proteolytic gene expression did not differ between groups after exercise and recovery feeding. Mechanistic target of rapamycin signaling (i.e., translational efficiency) was also similar between groups at rest and after exercise and the mixed meal. Muscle total RNA content (i.e., translational capacity) increased more during ED in TEST than PLA (P < 0.05). These findings indicate that attenuated proteolysis at rest, possibly downstream of AR, Fn14, and IL-6R signaling, and increased translational capacity, not efficiency, may drive lean mass accretion with testosterone administration during energy deficit.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Modificação Traducional de Proteínas/efeitos dos fármacos , Receptores Androgênicos/biossíntese , Testosterona/farmacologia , Adolescente , Adulto , Composição Corporal , Dieta , Exercício Físico , Hormônios/sangue , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Receptores de Interleucina-6/metabolismo , Receptor de TWEAK/metabolismo , Regulação para Cima , Adulto Jovem
7.
Am J Epidemiol ; 187(5): 1051-1063, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036411

RESUMO

We evaluated the performance of a semiquantitative food frequency questionnaire (SFFQ), the Automated Self-Administered 24-Hour Dietary Recall (ASA24), and 7-day dietary records (7DDRs), in comparison with biomarkers, in the estimation of nutrient intakes among 627 women in the Women's Lifestyle Validation Study (United States, 2010-2012). Two paper SFFQs, 1 Web-based SFFQ, 4 ASA24s (beta version), 2 7DDRs, 4 24-hour urine samples, 1 doubly labeled water measurement (repeated among 76 participants), and 2 fasting blood samples were collected over a 15-month period. The dietary variables evaluated were energy, energy-adjusted intakes of protein, sodium, potassium, and specific fatty acids, carotenoids, α-tocopherol, retinol, and folate. In general, relative to biomarkers, averaged ASA24s had lower validity than the SFFQ completed at the end of the data-collection year (SFFQ2); SFFQ2 had slightly lower validity than 1 7DDR; the averaged SFFQs had validity similar to that of 1 7DDR; and the averaged 7DDRs had the highest validity. The deattenuated correlation of energy-adjusted protein intake assessed by SFFQ2 with its biomarker was 0.46, similar to its correlation with 7DDRs (deattenuated r = 0.54). These data indicate that the SFFQ2 provides reasonably valid measurements of energy-adjusted intake for most of the nutrients assessed in our study, consistent with earlier conclusions derived using 7DDRs as the comparison method. The ASA24 needs further evaluation for use in large population studies, but an average of 3 days of measurement will not be sufficient for some important nutrients.


Assuntos
Biomarcadores/sangue , Registros de Dieta , Inquéritos Nutricionais , Autorrelato , Idoso , Biomarcadores/urina , Feminino , Humanos , Pessoa de Meia-Idade
8.
Am J Physiol Gastrointest Liver Physiol ; 315(6): G1003-G1015, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30212253

RESUMO

Hypobaric hypoxia and dietary protein and fat intakes have been independently associated with an altered gastrointestinal (GI) environment and gut microbiota, but little is known regarding host-gut microbiota interactions at high altitude (HA) and the impact of diet macronutrient composition. This study aimed to determine the effect of dietary protein:fat ratio manipulation on the gut microbiota and GI barrier function during weight loss at high altitude (HA) and to identify associations between the gut microbiota and host responses to HA. Following sea-level (SL) testing, 17 healthy males were transported to HA (4,300 m) and randomly assigned to consume provided standard protein (SP; 1.1 g·kg-1·day-1, 39% fat) or higher protein (HP; 2.1 g·kg-1·day-1, 23% fat) carbohydrate-matched hypocaloric diets for 22 days. Fecal microbiota composition and metabolites, GI barrier function, GI symptoms, and acute mountain sickness (AMS) severity were measured. Macronutrient intake did not impact fecal microbiota composition, had only transient effects on microbiota metabolites, and had no effect on increases in small intestinal permeability, GI symptoms, and inflammation observed at HA. AMS severity was also unaffected by diet but in exploratory analyses was associated with higher SL-relative abundance of Prevotella, a known driver of interindividual variability in human gut microbiota composition, and greater microbiota diversity after AMS onset. Findings suggest that the gut microbiota may contribute to variability in host responses to HA independent of the dietary protein:fat ratio but should be considered preliminary and hypothesis generating due to the small sample size and exploratory nature of analyses associating the fecal microbiota and host responses to HA. NEW & NOTEWORTHY This study is the first to examine interactions among diet, the gut microbiota, and host responses to weight loss at high altitude (HA). Observed associations among the gut microbiota, weight loss at HA, and acute mountain sickness provide evidence that the microbiota may contribute to variability in host responses to HA. In contrast, dietary protein:fat ratio had only minimal, transient effects on gut microbiota composition and bacterial metabolites which were likely not of clinical consequence.


Assuntos
Adaptação Fisiológica , Doença da Altitude/microbiologia , Dieta , Microbioma Gastrointestinal , Adulto , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Humanos , Masculino , Prevotella/isolamento & purificação , Redução de Peso
9.
FASEB J ; 27(9): 3837-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23739654

RESUMO

The purpose of this work was to determine the effects of varying levels of dietary protein on body composition and muscle protein synthesis during energy deficit (ED). A randomized controlled trial of 39 adults assigned the subjects diets providing protein at 0.8 (recommended dietary allowance; RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g kg(-1) d(-1) for 31 d. A 10-d weight-maintenance (WM) period was followed by a 21 d, 40% ED. Body composition and postabsorptive and postprandial muscle protein synthesis were assessed during WM (d 9-10) and ED (d 30-31). Volunteers lost (P<0.05) 3.2 ± 0.2 kg body weight during ED regardless of dietary protein. The proportion of weight loss due to reductions in fat-free mass was lower (P<0.05) and the loss of fat mass was higher (P<0.05) in those receiving 2×-RDA and 3×-RDA compared to RDA. The anabolic muscle response to a protein-rich meal during ED was not different (P>0.05) from WM for 2×-RDA and 3×-RDA, but was lower during ED than WM for those consuming RDA levels of protein (energy × protein interaction, P<0.05). To assess muscle protein metabolic responses to varied protein intakes during ED, RDA served as the study control. In summary, we determined that consuming dietary protein at levels exceeding the RDA may protect fat-free mass during short-term weight loss.


Assuntos
Composição Corporal/fisiologia , Proteínas Alimentares/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Redução de Peso/fisiologia , Adulto , Antropometria , Composição Corporal/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Feminino , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Período Pós-Prandial , Redução de Peso/efeitos dos fármacos , Adulto Jovem
10.
Psychopharmacology (Berl) ; 241(3): 461-478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038817

RESUMO

RATIONALE: Behavioral effects of testosterone depend on dose, acute versus sustained formulation, duration of administration, personality, genetics, and endogenous levels of testosterone. There are also considerable differences between effects of endogenous and exogenous testosterone. OBJECTIVES: This study was the secondary behavioral arm of a registered clinical trial designed to determine if testosterone protects against loss of lean body mass and lower-body muscle function induced by a severe energy deficit typical of sustained military operations. METHODS: Behavioral effects of repeated doses of testosterone on healthy young men whose testosterone was reduced by severe energy deficit were examined. This was a double-blind, placebo-controlled, between-group study. Effects of four weekly intramuscular injections of testosterone enanthate (200 mg/week, N = 24) or matching placebo (N = 26) were evaluated. Determination of sample size was based on changes in lean body mass. Tasks assessing aggression, risk-taking, competition, social cognition, vigilance, memory, executive function, and mood were repeatedly administered. RESULTS: During a period of artificially induced, low testosterone levels, consistent behavioral effects of administration of exogenous testosterone were not observed. CONCLUSIONS: Exogeneous testosterone enanthate (200 mg/week) during severe energy restriction did not reliably alter the measures of cognition. Study limitations include the relatively small sample size compared to many studies of acute testosterone administration. The findings are specific to healthy males experiencing severe energy deficit and should not be generalized to effects of other doses, formulations, or acute administration of endogenous testosterone or studies conducted with larger samples using tests of cognitive function designed to detect specific effects of testosterone.


Assuntos
Agressão , Testosterona , Testosterona/análogos & derivados , Masculino , Humanos , Testosterona/farmacologia , Cognição , Assunção de Riscos
11.
Med Sci Sports Exerc ; 55(4): 661-669, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563086

RESUMO

INTRODUCTION/PURPOSE: The effects of testosterone on energy and substrate metabolism during energy deficit are unknown. The objective of this study was to determine the effects of weekly testosterone enanthate (TEST; 200 mg·wk -1 ) injections on energy expenditure, energy substrate oxidation, and related gene expression during 28 d of energy deficit compared with placebo (PLA). METHODS: After a 14-d energy balance phase, healthy men were randomly assigned to TEST ( n = 24) or PLA ( n = 26) for a 28-d controlled diet- and exercise-induced energy deficit (55% below total energy needs by reducing energy intake and increasing physical activity). Whole-room indirect calorimetry and 24-h urine collections were used to measure energy expenditure and energy substrate oxidation during balance and deficit. Transcriptional regulation of energy and substrate metabolism was assessed using quantitative reverse transcription-polymerase chain reaction from rested/fasted muscle biopsy samples collected during balance and deficit. RESULTS: Per protocol design, 24-h energy expenditure increased ( P < 0.05) and energy intake decreased ( P < 0.05) in TEST and PLA during deficit compared with balance. Carbohydrate oxidation decreased ( P < 0.05), whereas protein and fat oxidation increased ( P < 0.05) in TEST and PLA during deficit compared with balance. Change (∆; deficit minus balance) in 24-h energy expenditure was associated with ∆activity factor ( r = 0.595), but not ∆fat-free mass ( r = 0.147). Energy sensing (PRKAB1 and TP53), mitochondria (TFAM and COXIV), fatty acid metabolism (CD36/FAT, FABP, CPT1b, and ACOX1) and storage (FASN), and amino acid metabolism (BCAT2 and BCKHDA) genes were increased ( P < 0.05) during deficit compared with balance, independent of treatment. CONCLUSIONS: These data demonstrate that increased physical activity and not exogenous testosterone administration is the primary determinate of whole-body and skeletal muscle metabolic adaptations during diet- and exercise-induced energy deficit.


Assuntos
Metabolismo Energético , Testosterona , Masculino , Humanos , Oxirredução , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Poliésteres
12.
Physiol Rep ; 11(6): e15649, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949577

RESUMO

Physical performance decrements observed during multi-stressor military operations may be attributed, in part, to cellular membrane dysfunction, which is quantifiable using phase angle (PhA) derived from bioelectrical impedance analysis (BIA). Positive relationships between PhA and performance have been previously reported in cross-sectional studies and following longitudinal exercise training programs, but whether changes in PhA are indicative of acute decrements in performance during military operations is unknown. Data from the Optimizing Performance for Soldiers II study, a clinical trial examining the effects of exogenous testosterone administration on body composition and performance during military stress, was used to evaluate changes in PhA and their associations with physical performance. Recreationally active, healthy males (n = 34; 26.6 ± 4.3 years; 77.9 ± 12.4 kg) were randomized to receive testosterone undecanoate or placebo before a 20-day simulated military operation, which was followed by a 23-day recovery period. PhA of the whole-body (Whole) and legs (Legs) and physical performance were measured before (PRE) and after (POST) the simulated military operation as well as in recovery (REC). Independent of treatment, PhAWhole and PhALegs decreased from PRE to POST (p < 0.001), and PhALegs , but not PhAWhole , remained lower at REC than PRE. PhAWhole at PRE and REC were associated with vertical jump height and Wingate peak power (p < 0.001-0.050), and PhAWhole at PRE was also associated with 3-RM deadlift mass (p = 0.006). However, PhA at POST and changes in PhA from PRE to POST were not correlated with any performance measure (p > 0.05). Additionally, PhA was not associated with aerobic performance at any timepoint. In conclusion, reduced PhA from PRE to POST provides indirect evidence of cellular membrane disruption. Associations between PhA and strength and power were only evident at PRE and REC, suggesting PhA may be a useful indicator of strength and power, but not aerobic capacity, in non-stressed conditions, and not a reliable indicator of physical performance during severe physiological stress.


Assuntos
Militares , Masculino , Humanos , Impedância Elétrica , Estudos Transversais , Composição Corporal/fisiologia , Exercício Físico
13.
Biol Psychol ; 176: 108468, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481265

RESUMO

Previous research has shown greater risk aversion when people make choices about lives than cash. We tested the hypothesis that compared to placebo, exogenous testosterone administration would lead to riskier choices about cash than lives, given testosterone's association with financial risk-taking and reward sensitivity. A double-blind, placebo-controlled, randomized trial was conducted to test this hypothesis (Clinical Trials Registry: NCT02734238, www.clinicaltrials.gov). We collected functional magnetic resonance imaging (fMRI) data from 50 non-obese males before and shortly after 28 days of severe exercise-and-diet-induced energy deficit, during which testosterone (200 mg testosterone enanthate per week in sesame oil) or placebo (sesame seed oil only) was administered. Because we expected circulating testosterone levels to be reduced due to severe energy deficit, testosterone administration served a restorative function to mitigate the impact of energy deficit on testosterone levels. The fMRI task involved making choices under uncertainty for lives and cash. We also manipulated whether the outcomes were presented as gains or losses. Consistent with prospect theory, we observed the reflection effect such that participants were more risk averse when outcomes were presented as gains than losses. Brain activation in the thalamus covaried with individual differences in exhibiting the reflection effect. Testosterone did not impact choice, but it increased sensitivity to negative feedback following risky choices. These results suggest that exogenous testosterone administration in the context of energy deficit can impact some aspects of risky choice, and that individual differences in the reflection effect engage a brain structure involved in processing emotion, reward and risk.


Assuntos
Jogo de Azar , Assunção de Riscos , Masculino , Humanos , Testosterona , Jogo de Azar/psicologia , Comportamento de Escolha/fisiologia , Encéfalo , Recompensa , Tomada de Decisões/fisiologia
14.
N Engl J Med ; 360(9): 859-73, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19246357

RESUMO

BACKGROUND: The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. METHODS: We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. RESULTS: At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. CONCLUSIONS: Reduced-calorie diets result in clinically meaningful weight loss regardless of which macronutrients they emphasize. (ClinicalTrials.gov number, NCT00072995.)


Assuntos
Dieta com Restrição de Carboidratos , Dieta com Restrição de Gorduras , Dieta Redutora/métodos , Obesidade/dietoterapia , Redução de Peso , Pressão Sanguínea , Peso Corporal , Doenças Cardiovasculares , Colesterol/sangue , Aconselhamento , Diabetes Mellitus , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Obesidade/terapia , Cooperação do Paciente , Fatores de Risco , Saciação , Circunferência da Cintura
15.
Nutrition ; 101: 111658, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691183

RESUMO

OBJECTIVES: Arginine is an amino-acid supplement and precursor for nitric-oxide synthesis, which affects various biologic processes. The objective of this study was to determine the effects of arginine supplementation on growth hormone (GH) and metabolic parameters. METHODS: Thirty physically active, healthy men (age 18-39 y; body mass index: 18.5-25 kg/m2) were randomized in a double-blind, placebo-controlled, crossover trial. Arginine (10 g) and placebo (0 g) beverages were consumed after an overnight fast. Blood samples were collected at baseline and 1.5, 3.0, and 24 h after supplementation. The primary outcomes were serum GH and metabolomics. Also, amino acids, glucose, insulin, triacylglycerols, thyroid hormones, testosterone, cortisol, dehydroepiandrosterone, and mood state were assessed. Individuals with detectable increases in GH were analyzed separately (responders: n = 16; < 0.05 ng/mL at 1.5 h). Repeated-measure analyses of variance estimated the treatment effects at each timepoint. RESULTS: Arginine levels increased at 1.5 h (146%) and 3.0 h (95%; P ≤ 0.001) and GH (193%) and thyroid-stimulating hormone (TSH; 10%) levels at 24 h (P < 0.05) after arginine versus placebo consumption. Arginine versus placebo increased glucose levels at 1.5 h (5%) and 3.0 h (3%; P ≤ 0.001). Arginine versus placebo did not affect other dependent measures, including mood state (P > 0.05), but changes in the urea, glutamate, and citric-acid pathways were observed. Among responders, arginine versus placebo increased GH at 1.5 h (37%), glucose at 1.5 h (4%) and 3.0 h (4%), and TSH at 24 h (9%; P < 0.05). Responders had higher levels of benzoate metabolites at baseline and 1.5 h, and an unknown compound (X-16124) at baseline, 1.5 h, and 24 h that corresponds to a class of gut microbes (P < 0.05). CONCLUSIONS: Arginine supplementation modestly increased GH, glucose, and TSH levels in younger men. Responders had higher benzoate metabolites and an unknown analyte attributed to the gut microbiome. Future studies should examine whether the increased prevalence of these gut microorganisms corresponds with GH response after arginine supplementation.


Assuntos
Arginina , Hormônio do Crescimento Humano , Adolescente , Adulto , Arginina/farmacologia , Benzoatos/análise , Suplementos Nutricionais/análise , Método Duplo-Cego , Glucose , Hormônio do Crescimento , Hormônio do Crescimento Humano/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Tireotropina , Adulto Jovem
16.
J Clin Endocrinol Metab ; 107(8): e3254-e3263, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35532889

RESUMO

CONTEXT: Effects of testosterone on integrated muscle protein metabolism and muscle mass during energy deficit are undetermined. OBJECTIVE: The objective was to determine the effects of testosterone on mixed-muscle protein synthesis (MPS), proteome-wide fractional synthesis rates (FSR), and skeletal muscle mass during energy deficit. DESIGN: This was a randomized, double-blind, placebo-controlled trial. SETTING: The study was conducted at Pennington Biomedical Research Center. PARTICIPANTS: Fifty healthy men. INTERVENTION: The study consisted of 14 days of weight maintenance, followed by a 28-day 55% energy deficit with 200 mg testosterone enanthate (TEST, n = 24) or placebo (PLA, n = 26) weekly, and up to 42 days of ad libitum recovery feeding. MAIN OUTCOME MEASURES: Mixed-MPS and proteome-wide FSR before (Pre), during (Mid), and after (Post) the energy deficit were determined using heavy water (days 1-42) and muscle biopsies. Muscle mass was determined using the D3-creatine dilution method. RESULTS: Mixed-MPS was lower than Pre at Mid and Post (P < 0.0005), with no difference between TEST and PLA. The proportion of individual proteins with numerically higher FSR in TEST than PLA was significant by 2-tailed binomial test at Post (52/67; P < 0.05), but not Mid (32/67; P > 0.05). Muscle mass was unchanged during energy deficit but was greater in TEST than PLA during recovery (P < 0.05). CONCLUSIONS: The high proportion of individual proteins with greater FSR in TEST than PLA at Post suggests exogenous testosterone exerted a delayed but broad stimulatory effect on synthesis rates across the muscle proteome during energy deficit, resulting in muscle mass accretion during subsequent recovery.


Assuntos
Metabolismo Energético , Proteínas Musculares , Músculo Esquelético , Proteoma , Testosterona/análogos & derivados , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Poliésteres/metabolismo , Poliésteres/farmacologia , Proteoma/metabolismo , Testosterona/administração & dosagem , Testosterona/farmacologia
17.
J Appl Physiol (1985) ; 133(2): 426-442, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796614

RESUMO

Male military personnel conducting strenuous operations experience reduced testosterone concentrations, muscle mass, and physical performance. Pharmacological restoration of normal testosterone concentrations may attenuate performance decrements by mitigating muscle mass loss. Previously, administering testosterone enanthate (200 mg/wk) during 28 days of energy deficit prompted supraphysiological testosterone concentrations and lean mass gain without preventing isokinetic/isometric deterioration. Whether administering a practical dose of testosterone protects muscle and performance during strenuous operations is undetermined. The objective of this study was to test the effects of a single dose of testosterone undecanoate on body composition and military-relevant physical performance during a simulated operation. After a 7-day baseline phase (P1), 32 males (means ± SD; 77.1 ± 12.3 kg, 26.5 ± 4.4 yr) received a single dose of either testosterone undecanoate (750 mg; TEST) or placebo (PLA) before a 20-day simulated military operation (P2), followed by a 23-day recovery (P3). Assessments included body composition and physical performance at the end of each phase and circulating endocrine biomarkers throughout the study. Total and free testosterone concentrations in TEST were greater than PLA throughout most of P2 (P < 0.05), but returned to P1 values during P3. Fat-free mass (FFM) was maintained from P1 to P2 in TEST (means ± SE; 0.41 ± 0.65 kg, P = 0.53), but decreased in PLA (-1.85 ± 0.69 kg, P = 0.01) and recovered in P3. Regardless of treatment, total body mass and fat mass decreased from P1 to P2 (P < 0.05), but did not fully recover by P3. Physical performance decreased during P2 (P < 0.05) and recovered by P3, regardless of treatment. In conclusion, administering testosterone undecanoate before a simulated military operation protected FFM but did not prevent decrements in physical performance.NEW & NOTEWORTHY This study demonstrated that a single intramuscular dose of testosterone undecanoate (750 mg) administered to physically active males before a 20-day simulated, multi-stressor military operation increased circulating total and free testosterone concentrations within normal physiological ranges and spared FFM. However, testosterone administration did not attenuate decrements in physical performance across multiple measures of power, strength, anaerobic or aerobic capacity.


Assuntos
Militares , Composição Corporal , Humanos , Masculino , Poliésteres/farmacologia , Testosterona/análogos & derivados
18.
Front Nutr ; 8: 779486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118104

RESUMO

A successful randomized clinical trial of the effect of dietary supplements on a chosen endpoint begins with developing supporting data in preclinical studies while paying attention to easily overlooked details when planning the related clinical trial. In this perspective, we draw on our experience studying the effect of an ethanolic extract from Artemisia dracunculus L. (termed PMI-5011) on glucose homeostasis as a potential therapeutic option in providing resilience to metabolic syndrome (MetS). Decisions on experimental design related to issues ranging from choice of mouse model to dosing levels and route of administration in the preclinical studies will be discussed in terms of translation to the eventual human studies. The more complex considerations in planning the clinical studies present different challenges as these studies progress from testing the safety of the dietary supplement to assessing the effect of the dietary supplement on a predetermined clinical outcome. From the vantage point of hindsight, we will outline potential pitfalls when translating preclinical studies to clinical studies and point out details to address when designing clinical studies of dietary supplements.

19.
Contemp Clin Trials Commun ; 23: 100819, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34278044

RESUMO

BACKGROUND: Previously, young males administered 200 mg/week of testosterone enanthate during 28 days of energy deficit (EDef) gained lean mass and lost less total mass than controls (Optimizing Performance for Soldiers I study, OPS I). Despite that benefit, physical performance deteriorated similarly in both groups. However, some experimental limitations may have precluded detection of performance benefits, as performance measures employed lacked military relevance, and the EDef employed did not elicit the magnitude of stress typically experienced by Soldiers conducting operations. Additionally, the testosterone administered required weekly injections, elicited supra-physiological concentrations, and marked suppression of endogenous testosterone upon cessation. Therefore, this follow-on study will address those limitations and examine testosterone's efficacy for preserving Solder performance during strenuous operations. METHODS: In OPS II, 32 males will participate in a randomized, placebo-controlled, double-blind trial. After baseline testing, participants will be administered either testosterone undecanoate (750 mg) or placebo before completing four consecutive, 5-day cycles simulating a multi-stressor, sustained military operation (SUSOPS). SUSOPS will consist of two low-stress days (1000 kcal/day exercise-induced EDef; 8 h/night sleep), followed by three high-stress days (3000 kcal/day and 4 h/night). A 23-day recovery period will follow SUSOPS. Military relevant physical performance is the primary outcome. Secondary outcomes include 4-comparment body composition, muscle and whole-body protein turnover, intramuscular mechanisms, biochemistries, and cognitive function/mood. CONCLUSIONS: OPS II will determine if testosterone undecanoate safely enhances performance, while attenuating muscle and total mass loss, without impairing cognitive function, during and in recovery from SUSOPS. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04120363.

20.
J Neurosci ; 29(29): 9292-300, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19625519

RESUMO

Bleeding head injury is associated with gastric stasis, a symptom of collapse of autonomic control of the gut described by Cushing around 1932. Recent work suggests that the proteinase thrombin, produced secondary to bleeding, may be the root cause. Results from our in vivo physiological studies show that fourth ventricular injection of PAR1 agonists, as well as thrombin itself, produced significant reductions in gastric transit in the awake rat. We expected that the PAR1 effect to inhibit gastric transit was the result of direct action on vagovagal reflex circuitry in the dorsal medulla. Surprisingly, our immunohistochemical studies demonstrated that PAR1 receptors are localized exclusively to the astrocytes and not the neurons in the nucleus of the solitary tract (NST; principal locus integrating visceral afferent input and part of the gastric vagovagal reflex control circuitry). Our in vitro calcium imaging studies of hindbrain slices revealed that PAR1 activation initially causes a dramatic increase in astrocytic calcium, followed seconds later by an increase in calcium signal in NST neurons. The neuronal effect, but not the astrocytic effect, of PAR1 activation was eliminated by glutamate receptor antagonism. TTX did not eliminate the effects of PAR1 activation on either glia or neurons. Thus, we propose that glia are the primary CNS sensors for PAR agonists and that the response of these glial cells drives the activity of adjacent (e.g., NST) neurons. These results show, for the first time, that changes in autonomic control can be directly signaled by glial detection of local chemical stimuli.


Assuntos
Astrócitos/fisiologia , Cálcio/metabolismo , Neurônios/fisiologia , Receptor PAR-1/metabolismo , Núcleo Solitário/fisiologia , Estômago/fisiologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Ratos , Receptor PAR-1/agonistas , Rombencéfalo/citologia , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/fisiologia , Bloqueadores dos Canais de Sódio/administração & dosagem , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Tetrodotoxina/administração & dosagem , Trombina/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA