Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 18(1): 223, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305095

RESUMO

BACKGROUND: Rubber tree is cultivated in mainly Southeast Asia and is by far the most significant source of natural rubber production worldwide. However, the genetic architecture underlying the primary agronomic traits of this crop has not been widely characterized. This study aimed to identify quantitative trait loci (QTLs) associated with growth and latex production using a biparental population established in suboptimal growth conditions in Brazil. RESULTS: A full-sib population composed of 251 individuals was developed from crossing two high-producing Asiatic rubber tree cultivars, PR 255 and PB 217. This mapping population was genotyped with microsatellite markers from enriched genomic libraries or transcriptome datasets and single-nucleotide polymorphism (SNP) markers, leading to construction of a saturated multipoint integrated genetic map containing 354 microsatellite and 151 SNP markers. Height and circumference measurements repeated over a six-year period and registration of cumulative latex production during six consecutive months on the same individuals allowed in-depth characterization of the genetic values of several growth traits and precocious latex production. Growth traits, circumference and height, were overall positively correlated, whereas latex production was not correlated or even negatively correlated with growth traits. A total of 86 distinct QTLs were identified, most of which were detected for only one trait. Among these QTLs, 15 were linked to more than one phenotypic trait (up to 4 traits simultaneously). Latex production and circumference increments during the last wintering period were associated with the highest numbers of identified QTLs (eleven and nine, respectively), jointly explaining the most significantly observed phenotypic variances (44.1% and 44.4%, respectively). The most important QTL for latex production, located on linkage group 16, had an additive effect of the male parent PB 217 and corresponded to a QTL at the same position detected in a previous study carried out in Thailand for the biparental population RRIM 600 x PB 217. CONCLUSIONS: Our results identified a set of significant QTLs for rubber tree, showing that the performance of modern Asiatic cultivars can still be improved and paving the way for further marker-assisted selection, which could accelerate breeding programs.


Assuntos
Hevea/genética , Látex/metabolismo , Locos de Características Quantitativas , Brasil , Clima , Hevea/metabolismo , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Genet Mol Biol ; 38(1): 67-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25983627

RESUMO

Because of the continuous introduction of germplasm from abroad, some collections have a high number of accessions, making it difficult to explore the genetic variability present in a germplasm bank for conservation and breeding purposes. Therefore, the aim of this study was to quantify and analyze the structure of genetic variability among 500 common bean accessions to construct a core collection. A total of 58 SSRs were used for this purpose. The polymorphism information content (PIC) in the 180 common bean accessions selected to compose the core collection ranged from 0.17 to 0.86, and the discriminatory power (DP) ranged from 0.21 to 0.90. The 500 accessions were clustered into 15 distinct groups and the 180 accessions into four distinct groups in the Structure analysis. According to analysis of molecular variance, the most divergent accessions comprised 97.2% of the observed genetic variability present within the base collection, confirming the efficiency of the selection criterion. The 180 selected accessions will be used for association mapping in future studies and could be potentially used by breeders to direct new crosses and generate elite cultivars that meet current and future global market needs.

3.
PLoS One ; 15(5): e0232818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407352

RESUMO

Breeding for yield and fruit quality traits in passion fruits is complex due to the polygenic nature of these traits and the existence of genetic correlations among them. Therefore, studies focused on crop management practices and breeding using modern quantitative genetic approaches are still needed, especially for Passiflora alata, an understudied crop, popularly known as the sweet passion fruit. It is highly appreciated for its typical aroma and flavor characteristics. In this study, we aimed to reevaluate 30 genotypes previously selected for fruit quality from a 100 full-sib sweet passion fruit progeny in three environments, with a view to estimating the heritability and genetic correlations, and investigating the GEI and response to selection for nine fruit traits (weight, diameter and length of the fruit; thickness and weight of skin; weight and yield of fruit pulp; soluble solids, and yield). Pairwise genetic correlations among the fruit traits showed mostly intermediate to high values, especially those associated with fruit size and shape. Different genotype rankings were obtained regarding the predicted genetic values of weight of skin, thickness of skin and weight of pulp in each environment. Finally, we used a multiplicative selection index to select simultaneously for weight of pulp and against fruit skin thickness and weight. The response to selection was positive for all traits except soluble solids, and the 20% superior (six) genotypes were ranked. Based on the assumption that incompatibility mechanisms exist in P. alata, the selected genotypes were intercrossed in a complete diallel mating scheme. It is worth noting that all genotypes produced fruits, which is essential to guarantee yields in commercial orchards.


Assuntos
Frutas/genética , Interação Gene-Ambiente , Passiflora/genética , Cruzamento , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Variação Genética/genética , Genótipo , Passiflora/crescimento & desenvolvimento , Seleção Genética/genética
4.
PLoS One ; 14(7): e0219843, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318931

RESUMO

Sugarcane (Saccharum spp.) has a complex genome with variable ploidy and frequent aneuploidy, which hampers the understanding of phenotype and genotype relations. Despite this complexity, genome-wide association studies (GWAS) may be used to identify favorable alleles for target traits in core collections and then assist breeders in better managing crosses and selecting superior genotypes in breeding populations. Therefore, in the present study, we used a diversity panel of sugarcane, called the Brazilian Panel of Sugarcane Genotypes (BPSG), with the following objectives: (i) estimate, through a mixed model, the adjusted means and genetic parameters of the five yield traits evaluated over two harvest years; (ii) detect population structure, linkage disequilibrium (LD) and genetic diversity using simple sequence repeat (SSR) markers; (iii) perform GWAS analysis to identify marker-trait associations (MTAs); and iv) annotate the sequences giving rise to SSR markers that had fragments associated with target traits to search for putative candidate genes. The phenotypic data analysis showed that the broad-sense heritability values were above 0.48 and 0.49 for the first and second harvests, respectively. The set of 100 SSR markers produced 1,483 fragments, of which 99.5% were polymorphic. These SSR fragments were useful to estimate the most likely number of subpopulations, found to be four, and the LD in BPSG, which was stronger in the first 15 cM and present to a large extension (65 cM). Genetic diversity analysis showed that, in general, the clustering of accessions within the subpopulations was in accordance with the pedigree information. GWAS performed through a multilocus mixed model revealed 23 MTAs, six, three, seven, four and three for soluble solid content, stalk height, stalk number, stalk weight and cane yield traits, respectively. These MTAs may be validated in other populations to support sugarcane breeding programs with introgression of favorable alleles and marker-assisted selection.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Característica Quantitativa Herdável , Saccharum/genética , Algoritmos , Alelos , Ligação Genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo
5.
PLoS One ; 11(3): e0150506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930078

RESUMO

The common bean (Phaseolus vulgaris L.) is the world's most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.


Assuntos
Resistência à Doença/genética , Genoma de Planta/genética , Phaseolus/genética , Doenças das Plantas/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Colletotrichum/fisiologia , Frequência do Gene , Genes de Plantas/genética , Marcadores Genéticos/genética , Genótipo , Interações Hospedeiro-Patógeno , Padrões de Herança/genética , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA